BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS INSTRUCTION DIVISION, FIRST SEMESTER 2012-13 COURSE HANDOUT (PART-II)

Date: 03/08/2012

In addition to Part I (General Handout for all the courses appended to the time table), this portion gives further specific details regarding the course.

Course No.	CS F215/EEE F215/ECE F215		
Course Title	Digital Design		
Instructor-in-charge	S. K. Sahoo		
Team of Instructors			
(i) For Lecture	S. K. Sahoo		
(ii) For Tutorial	S. K. Sahoo		
(ii) For Practical	S. K. Sahoo, Narayan K, Prasant Kumar Pattnaik		
Course Description	Description This course covers the topics on Boolean Algebra		
	logic minimization; combinational logic circuits :		
	arithmetic circuit design, Design using MSI components;		
	Sequential Logic Circuits : flip flops & latches, registers		
	and counters, Finite state machine; HDL Implementation		
	of Digital circuits; Digital Integrated Circuits ;		
	Programmable logic devices; Memory organization ;		
	Algorithmic State machine; Introduction to computer		
	organization; The course will also have laboratory		
	component on digital design		
Scope and Objective	The objective of the course is to impart knowledge of the		
	basic tools for the design of digital circuits and to provide		
	methods and procedures suitable for a variety of digital		
	design applications. The course also introduces		
	fundamental concepts of computer organization. The		
	course also provides laboratory practice using MSI		
	devices.		

Text Books. :

- T1: M.Moris Mano and Michael D. Ciletti "Digital Design", PHI, 4th Edition, 2007
- T2: G Raghurama, , TSB Sudharshan "Introduction to Computer Organization. EDD notes 2007
- T3: G Raghurama, S & Others Experiments in Digital Electronics, EDD notes 2007.

Reference Books:

R1: Donald D. Givonne ., "Digital Principles and Design" TMH, 2003

Course Plan.

Lect. No.	Learning Objectives	Topics to be covered	Reference to Text Book	
1	Introduction to Digital Systems and Characteristics of Digital ICs.	Digital Systems, Digital ICs	1.1; 1.9; 2.3, 10.1,2	
2.	Boolean algebra and logic gates, Codes number systems	Boolean functions Canonical forms, number systems and codes	1.2-7, 2.4-2.9	
3-5	Simplification of Boolean functions	K-Maps (4,5 variables), QM Method	3.1 to 3.8	
6	Simulation and synthesis basics	Hardware Description Language	3.11	
7-9	Combinational Logic, Arithmetic circuits	Adders, Subtracters Multipliers	4.1 - 4-7	
10-11	Sequential Logic	Flip-Flops & Characteristic tables, Latches.	5.1 to 5.4	
12-14	Digital Integrated Circuits	TTL, MOS Logic families and their characteristics	10.3, 10.5, 10.7 to 10.10	
15-16	MSI Components	Comparators, Decoders, Encoders, MUXs, DEMUXs	4.8 to 4.11	
17	Simulation of Combinational Logic Functions.	HDL for Combinational Logic	4.12	
18-20	Memory and PLDs	RAM, ROM, PLA, PAL	7.2, 7.5 to 7.7	
21-22	Clocked Sequential Circuits	Analysis of clocked sequential circuits, state diagram and reduction	5.5, 5.7	
23	Simulation of Sequential Logic Functions.	HDL for Sequential Logic	5.6	
24-25	Registers & Counters	Shift registers, Synchronous & Asynchronous counters	6.1 to 6.5	
26-27	Analysis of arithmetic units	Multiplication & Division algorithms	T2: Appendix A	
28-31	Modular approach for CPU Design	RTL, HDL description 8.1,8.2, 8.4 to 8.8		
32-34	Design of Digital Systems	Algorithmic State Machines	R1. Chapter 8	
35-37	Design of Asynchronous Circuits.	Asynchronous Sequential Logic	9.1 - 9.4	
38-40	Memory Organization	Memory Hierarchy & different types of memories	T2: Ch 6	

Component	Duration	Maximum	Date & Time	Remarks
		Marks		
Test 1	60 mins	50	21/9 2.00-3.00pm	
Test 2	60 mins	50	2/11 2.00-3.00pm	
Comprehensive	3 Hrs	120	5/12 AN	
Examination				
Practicals:		40	To be announced	To be
Regularity, Lab				announced
reports				
Lab test &		40	To be announced	
Viva/assignment				

Evaluation Scheme:

(b) Practicals (From T3.)

S.No.	Name of experiment
1.	FAMILIARIZATION OF BENCH EQUIPMENTS
2.	IMPLEMENTATION OF BOOLEAN FUNCTIONS USING LOGIC GATES
3.	OPERATION OF 4-BIT COUNTER
4.	ADDERS AND SUBTRACTORS
5.	BCD ADDER
6.	DECODERS, MULTIPLEXERS AND DEMULTIPLEXERS
7.	LATCHES & FLIP-FLOPS
8.	COMPARATORS & ARITHMETIC LOGIC UNIT
9.	COUNTERS
10.	SHIFT REGISTERS
11.	SEQUENTIAL CIRCUITS
12.	MEMORIES AND FPGAs

Make-up Policy: There will no make-ups unless for genuine reasons. Prior permission is to be taken.

Chamber Consultation Hour: To be announced in class

Notices: All notices will be posted on eduCAN only.

Instructor-in-charge, CS F215/EEE F215/ECE F215