BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI HYDERABAD CAMPUS SECOND SEMESTER 2013 – 2014 Course Handout (Part II)

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No:CS F363 / IS F342Course Title:Compiler Construction / COMPILER DESIGNInstructor-in-charge:Dr. Aruna Malapati (arunam@hyderabad.bits-pilani.ac.in)

1. Objective

The course treats compiler construction/ design for imperative programming languages. This includes lexical, syntactical, and semantic analysis as well as static program analysis, optimization, and code generation.

2. Scope

This course provides all necessary theoretical knowledge required to implement a compiler from scratch, which forms the practical part of the lecture. This course will then proceed to provide tools and techniques for implementing such features as part of a compiler. Students will also participate in small teams in building a compiler for a language of their choice through programming assignments.

3.a. Text Book

T1. Aho, Sethi and Ullman.Compilers Principles, Techniques, and Tools. Pearson Education. Low Price Edition. Second Edition

3.b. Reference Books

R1. Andrew Appel, Modern Compiler Implementation in Java.

Cambridge University Press. (Foundation Books, New Delhi.) Rev. Ed. 2000.

Module	Title	Learning Objective(s)		
C1	Introduction to Compilers	To understand the context and use of a compiler.		
C2	Front End of a Compiler	To understand the implementation of a front end of a compiler - scanning, parsing and semantic analysis.		
C3	Back End of a Compiler	To understand the implementation of a back end of a compiler - Activation Records, Code Generation and Register allocation.		
C4	Special aspects of compilers and runtime	To understand some special aspects of compilers and runtime such as code optimization, garbage collection, and scheduling of instructions.		

4. Course Plan

4.a. Modules and Learning Objectives

Sl No	Торіс	Learning Objective	No of Lectures	Modu le	Reading
1.	Description of compiler phases	Introduction to Course. Structure and Components of a compiler.	Course. 2 omponents of a		T1 Ch1(1.2)
2.	Lexical Analysis & LEX	Tokens, Lexer functionality, Lexical Analyzer Tool	4 C2		T1 Ch. 3
3.	Symbol Table	Data Structures for symbol table organization	1		T1 Ch 2 2.7
	Syntax Analysis	Parsing, Parser Generator functionality	1		T1 Ch. 4
		Grammar Transformations for different types of parsers	1		Notes
4.		Top Down Parser / LL(1) parser LL(1) Grammar LL(1) Parse algorithm Computing first and follow sets	4	C2	T1 Ch4 (4.4)
		Bottom Up parsers - SLR,LR(k),LALR	8		T1 Ch4 (4.5)
5.	Syntax Analysis Tool	YACC and any other tools available	1		
6.	Syntax Directed Translation	Inherited and Synthesized Attributes	zed Attributes 4		T1 Ch. 5
7.	Intermediate Code Generation	3AC, Syntax Trees, Translation of Expressions, Type Checking, Control Flow	5 C3		T1 Ch. 6
8.	Code Optimization	Basic blocks, Flow graphs, DAG	1		T1 Ch. 8.4,8.5.1
		Function Preserving Transformations	3	C4	T1 Ch. 8.5
		Loop optimizations	2		
		Global data flow analysis	2	C4	T1 Ch. 8.5
9.	Code Generation	Basic Blocks and Traces, Issues in code generation, Approach to code generation	2	C3	T1 Ch. 8
Total	number of classes Plann	ed	41		

4.b. Lecture Schedule

Total number of classes Planned

5. Evaluation Scheme

5.a. Major Components

Component	Mode	Duration	Date	Weightage
Quiz	Closed Book	*	To be announced in	5%
			class	
Assignments	Lab (Taka Homa)	*	To be announced in	20%
	Lau (Take Home)		class	
Test 1	Closed Book	60mins	24/2/2014	20%
			8.00 - 9.00 AM	
Test 2	Closed Book	60mins	28/3/2014	20%
			8.00 - 9.00 AM	
Comprehensive	Partly Open Book *	3 hours	09/05/2014 AN	35%

*Prescribed Text book, References and only Hand-Written Notes Permitted.

5.b. Timeliness

- Assignments are to be completed in time with no postponements.
- Submissions 24 hours from deadline will have a penalty of 2 Marks per day. •

6. Notices: All notices related to the course will be displayed on the CSIS Notice **Board**, and / or course website. Make ups shall be granted on prior permission and only to genuine cases.

Instructor-in-charge CS F363 / IS F342