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Abstract—Indoor Localization is a primary task for social
robots. We are particularly interested in how to solve this
problem for a mobile robot using primarily vision sensors.
This work examines a critical issue related to generalizing
approaches for static environments to dynamic ones: (i) it
considers how to deal with dynamic users in the environment
that obscure landmarks that are key to safe navigation, and
(ii) it considers how standard localization approaches for static
environments can be augmented to deal with dynamic agents
(e.g., humans). We propose an approach which integrates
wheel odometry with stereo visual odometry and perform a
global pose refinement to overcome previously accumulated
errors due to visual and wheel odometry. We evaluate our
approach through a series of controlled experiments to see
how localization performance varies with increasing number
of dynamic agents present in the scene.

Keywords-localization; visual odometry; wheel odometry;
humans; dynamic environments; robot pose;

I. INTRODUCTION

Robotics finds application in a range of different fields. A

key issue in many potential application areas is the need for

the robot to operate within an environment that is populated

by other users (people) who execute independent motions

thus complicating sensing and planning tasks. To take but

one example, imagine the deployment of an autonomous

robot in a hospital environment. Such a robot would have to

be able to localize itself in hospital corridors with dynamic

agents like moving people, beds, and other dynamic events

that take place in the corridors. Although there are many

computational tasks required of such a robot, one enabling

capability is having the robot to be able to know its current

pose in this environment, and it is this problem that is central

to this work. Localization of a robot in static environments

with a known map is much easier [1], than when the map is

unknown and the environment is not static. Basic localiza-

tion approaches for known and unknown static environments

can be found in most texts on robots (e.g., [2], [3]) and for

properly conditioned robots and sensors this problem can

be considered solved. This work addresses a more complex

version of the problem of localization of a mobile robot in a

dynamic environment with a known 2D occupancy map with

dynamic obstacles with unknown trajectories. The map has

(a) (b)

(c) (d)

Figure 1. Different situations our approach can localize in (a,b) crowded
corridor with 3-4 people; (c) robot moving in a texture-less corridor (d)
camera view occluded

certain interest points which serve as important landmarks

at which a global refinement is performed. Due to this

refinement we overcome any previously accumulated errors

introduced by visual or wheel odometry. The paper has

detailed empirical analysis which show how the performance

of localization varies with the different number of dynamic

agents present in the scene. For this work, we make use of a

standard RGBD sensor (a stereo camera) for environmental

sensing and a commercial robot base (Pioneer 3AT).

In this work, we are able to localize the robot with

high accuracy in challenging situations (see Figure 1) like

partial or complete occlusions of the camera view, significant

number of dynamic agents present in the scene, robot

navigating in a texture-less corridor, robot facing blank

walls, etc. A map of the environment is assumed to be

known apriori. The map could be a 2D occupancy map or

a floor plan of the world in which the the robot operates.

As opposed to loop closure techniques for pose refinement

where one needs to have visited the place in advance to

perform a refinement, in our approach, we do not need to

have visited the place before. The major contributions of

this work are: (i) an approach which can act as a wrapper

for traditional localization approaches to handle challenging
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dynamic situations, (ii) empirical analysis of our approach

to see how visual odometry behaves as number of dynamic

agents are increased, (iii) a dataset in which the number of

dynamic agents vary which can be used by others to validate

their alternative approaches.

The paper is structured as follows. In section II, existing

literature is presented for various approaches to localization

in both static and dynamic environments. Section III presents

the proposed approach. In section IV, we provide detailed

empirical results for our work. Section V provides the

conclusion and possible future work.

II. RELEVANT WORK

Localization of mobile robots is the ability of the robot

to know its pose at any given time instance. Essentially

this requires the robot to answer the question, “Where am
I?”. To answer this question, the robot may rely on a

variety of sensors, techniques such as wheel odometry using

shaft encoders [4], laser odometry using Lidars [1], inertial

navigation systems using gyroscopes and accelerometers [5],

visual odometry using cameras [6], global positioning sys-

tems [7] and Sonar / Ultrasonic sensors [8]. Each of these

approaches have their own strengths and weaknesses. For

instance lasers provide long range depth information but

provide no visual context, cameras provide visual informa-

tion about context but not long range depth, GPS does not

work in indoor environments or its signal might degrade in

city environments. Often people rely on techniques known

as sensor fusion to leverage data from multiple sensors and

provide an accurate estimate about the pose of the robot. One

of the current state of the art techniques for localization is

based on a sensor fusion approach using data from a 3D laser

and monocular camera by Zhang and Singh [1]. Another

interesting sensor fusion based localization technique is that

of Tsotsos et al. [9] where they used data from an IMU

and monocular camera and performed better than the current

state of the art systems.

In this section, we focus primarily on localization us-

ing visual sensors. The process of estimating ego-motion

(translation and orientation of an agent, e.g., vehicle, human,

and robot) by using only the input of single or multiple

cameras is called Visual Odometry (VO) [10]. The work

of Aqel et al. [6] provides an overview on the different

techniques for addressing localization using visual odometry.

Some early works include that of Matthies and Shafer [11]

in 1987, Nister et al. [12] in 2004 and Howard [13] in 2008.

These earlier works form the basis of most approaches of

visual odometry today. Most VO approaches today try to

optimize these approaches in an efficient manner to produce

optimal results. Kitt et al. [14] used an iterated sigma

point Kalman Filter together with a RANSAC-based outlier

rejection approach to estimate ego motion of the vehicle.

Feature based approaches have been used by NASA on the

Mars rovers in Maimone et al. [15]. In 2007, Klein and

Murray [16] presented a SLAM approach known as PTAM

(Parallel Tracking and Mapping) to create a map of the scene

and in parallel estimating the pose of the camera. Following

the approach of PTAM, Pire et al. [17] proposed S-PTAM in

which they overcame the limitations of the PTAM approach.

Cvišić and Petrović [18] proposed a visual odometry

technique SOFT to estimate vehicle pose. They extract

features in an intelligent manner by selection based on its

age, strength, initial descriptor, refined current position in

image, etc. and track the reliable features. They also use a

3 point RANSAC scheme fused with IMU Measurements

to further refine the pose. Geiger et al. [19] proposed the

libviso SLAM algorithm to compute the pose of the robot

and construct 3D maps from high resolution stereo images

in real time. Their approach runs successfully on a CPU

at 25 fps for the location part. We build on top of this

localization approach in this work by making modifications

to their VO approach and integrating wheel odometry and a

global pose refinement based on floor plans in our approach.

Their approach is able to handle sparsely populated dynamic

scenes well. Localization has also been addressed using

Place Recognition based techniques as in [20] and [21].

Recently in 2017, Zhu [22] proposed an approach GDVO

for visual odometry using a stereo camera. They extract

features in the gradient domain which makes their sys-

tem robust to illumination changes. Some other interesting

monocular localization approaches include ORB-SLAM [23]

and LSD-SLAM [24]. However, all these approaches either

work in sparsely dynamic scenes or for the most part static

environments. Addressing localization in highly dynamic

environments still remains an open research area.

Pink et al. [25] proposed an approach to estimate the

pose of vehicle by visually matching local features with

a global feature map obtained from geo-referenced aerial

imagery. They matched lane markings in the global map to

local lane markings to estimate ego-motion of the vehicle.

Chu et al. [26] used a similar concept to estimate the pose

of the vehicle by using GPS measurements and a 2D city

plan. Our work uses a similar refinement stage to refine

poses obtained from Visual Odometry which we correct

using information from an indoor map. Chu et al. [27] used

Indoor floor plans to address localization. They do matching

of video streams to estimate the pose of the camera. They

do piece-wise point cloud and free space matching to align

the geometric structure with the given floor plan. Their

localization technique is similar to that of a particle filter

based localization approach [28] where initially all poses

are equally likely and gradually weaker particles die out

and soon the pose can be estimated with high accuracy.

In 2002, Wang and Thorpe [29] introduced the concept

of detection and tracking of moving objects in SLAM. They

used laser scans obtained from the objects to segment out

moving objects. Yang and Wang [30] estimated ego motion

of the vehicle in highly dynamic environments using laser
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information. They were able to addresses the pose estimation

problem even when more than 50% of the scene was covered

with dynamic agents. In 2016, Sun et al. [31] proposed

a localization technique for dynamic environments. Their

approach was based on a Bayesian estimation process and

used laser data and odometry information.They did not

provide in a clear way information about the quality of

the dataset they tested nor about the dynamic nature of

the environment. However, these approaches use a laser

scanner which may not be permitted in places like hospitals,

schools, etc. Finally, laser scanners are more costly than

stereo cameras, and since our target application area is

institutional, these latter points are relevant for our sensor

choice.

III. OUR APPROACH

Now, we describe our proposed localization approach.

We enable the robot to maintain an estimate of its pose

as it moves in the presence of dynamic obstacles. Dynamic

obstacles do not provide any useful information to the robot

in terms of localization. Worse, their presence can degrade

the quality of localization of the robot as they may obscure

some of the visual landmarks required for the localization

of the robot. The robot needs to find a way to make use

of its wheel odometry and the information it perceives

from the stereo camera about its environment to accurately

localize itself in the map in the presence of these potentially

intermittent visual landmarks.

Visual sensors are known to be very accurate in static

environments, however a detailed analysis of their perfor-

mance in terms of dynamic environments remains open.

We propose to use a combination of information obtained

from cameras wherever possible and use wheel odometry

whenever the camera’s current view is obscured by humans

or dynamic objects. Wheel odometry is known to perform

with good accuracy for short distances as shown in [32].

This short-term accuracy is leveraged in our approach to

integrate with traditional visual odometry approaches. We

additionally use a global pose refinement technique to update

the pose of the robot with respect to known landmarks in

the occupancy map. The input to our approach is a 2D

occupancy map/floor plan and a known start point w.r.t. the

global map. Mapping is assumed to be known/solved. Now

we describe our approach.

A. Interest Point Selection in the Map

In this work, we use a simple form of map known as

Occupancy grids [33]. A sample occupancy map we used

in our approach can be seen in figure 2. Occupancy maps

provide valuable information about the geometric structure

of the environment. They are similar to floor plans without

the semantic annotations in them. From the given occupancy

maps, we mark certain points in the map as interest points.

These are the points where a global refinement can be

Figure 2. An occupancy grid map for the environment we deploy our
robots in. Yellow zone is the global pose refinement zone.

performed to accurately localize the robot in the map. In this

work we mark these points manually using the occupancy

map. Figure 2 shows these interest points in a sample map.

The occupancy map in our approach is generated from a

SICK tim 551 2D laser scanner1 (the scanner is used only

for initial map creation and not for any subsequent operation

of the robot). A sample gmapping package in ROS2 is

used to create the map. Other open-source algorithms like

the Google Cartographer [34] can also be used here. After

creating occupancy map, it is cleaned manually to remove

any inconsistencies in the map. Now we mark (hand select)

interest points where a global refinement is performed during

the localization step. Knowing the resolution of the map to

be 5 cm for one pixel, we get the coordinates of each of

the marked interest points in the map. These interest points

serve as candidate landmarks which if detected successfully

will improve the quality of localization and remove error

accumulation. Similar interest point detection can also be

manually done easily using a 2D floor plan of the building.

B. Localization in the presence of Dynamic Obstacles

Our approach is a hybrid approach using wheel encoders,

visual odometry and a global pose refinement scheme

to overcome previous accumulated errors in visual/wheel

odometry. Figure 3 provides a basic overview of our ap-

proach. Now, we describe the 3 basic components involved

in the Localization phase namely: (i) Visual Odometry

by tracking features, (ii) Wheel Odometry using Shaft

encoders, and (iii) Global Pose Refinement using Known

map. Each of these components are described below:

1) Visual Odometry by tracking features: The VO com-

ponent in our approach is same as that of Geiger et al. [19].

Features are extracted and then tracked to estimate ego-

motion. In [19], features are matched within a set of 4

images: current left image, current right image, previous left

and the previous right image. In order to find stable feature

1http://wiki.ros.org/sick tim
2http://wiki.ros.org/gmapping
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Figure 3. Overview of our proposed localization approach

locations, the input images are initially filtered with 5x5 blob

and corner masks. Next non-maximum and non-minimum

suppression is applied resulting in features belonging to

one of the 4 classes (i.e. blob max, blob min, corner max,

corner min). Features are matched only between these 4

classes. Features are matched in a circle to be qualified as a

successful match. We extract features from the current left

image, match it with the best point in the previous left image

within a MxM search window, then in the previous right

image, then the current right image and finally in the current

left image again. A feature point gets accepted only if the

last feature point co-incides with the first one.

A RANSAC based approach is used to estimate the

transformation matrix T = (r, t) which is the transformation

(rotation, r and translation, t) between two subsequent

images. The number of feature matches and the percentage

of inliers here play a crucial role. Based on the number

of matches and inliers percentage, we use wheel odometry

when the inliers percentage is not promising enough.

2) Wheel Odometry Integration using shaft encoders:
From the previous visual odometry component, if the per-

centage of inliers obtained is less than a threshold, γ, this

means that the visual odometry component estimated the

r, t matrices with fewer feature matches. This could happen

due to lack of sufficiently good static features, tracking a

dynamic consistent set of patches from a human, etc. In such

cases, we rely on wheel odometry to transiently update the

pose of the robot. Cases when visual odometry would not

provide us with a sufficient number of feature inliers include

when the robot is facing a blank featureless wall, too many

moving people in front of the camera, limiting visibility of

static content, motion blur, low quality of features detected,

etc. In all such circumstances, we estimate and update the

motion using wheel odometry. Say the robot at time, t was

at position, p and upto time t+δT visual odometry cannot be

relied on. So the motion of the robot during δT is computed

using wheel odometry.

Using wheel odometry, we get the pose of the robot at

each time instance in the form of position P (x, y, z) and ori-

Figure 4. Interest Points detection from camera view and corresponding
match in the occupancy map

entation Q(x, y, z, w) in quaternion form. This is converted

to a transformation matrix, T (consisting of rotation, r and

translation, t) of size 4x4. Say the transformation matrix at

time t1 is given by Rt1 and at t2 by Rt2 so the motion

during t2 − t1 is given by (Rt1)
−1 * Rt2. This motion is

then used to update the pose obtained from visual odometry.

It should also be noted that a standard inertial measure-

ment unit (IMU) can also be used instead of shaft encoders

in wheel odometry. However we did not use it.

3) Global Pose Refinement using Known Map: This

step is used to update pose of the robot whenever the robot

is near known landmarks/interest points. Interest points are

unique points in the occupancy maps which the robot can

use to refine its pose and reduce any previously accumulated

errors in the pose estimation process. The global refinement

component is only run when the robot’s pose obtained from

the integration of the visual and wheel odometry is within

a predefined range. These ranges of robot poses form zones

in which this component is run. An example of refinement

zones and interest points can be seen in figures 2, 4.

The interest points are typically at the intersection of two

perpendicular walls, but could also be at the intersection

of two walls at an angle or a pillar. These interest points

in the occupancy map are straight lines perpendicular to the

ground when observed from a camera’s view. Figure 4 shows

a correspondence between interest points on the occupancy

map and a camera view. To detect these interest points we

need to detect points in the highlighted regions in Figure 4.

Now, we explain the process of detection of points on the

specific landmarks. As these points lie on vertical lines,
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Figure 5. Estimation of the predicted landmark location (Robot pose +
World Coordinates of feature point w.r.t. camera)

we need to detect points on these lines. First, we filter the

images with an oriented gabor filter at 90 degrees to detect

vertical edges/lines. Gabor Filters have been widely used for

texture analysis, feature extraction, disparity estimation, etc.

These filters are special types of filters which only allow a

certain band of frequencies to pass through and reject the

others. Now, we get only vertical edges from the image.

Next, we employ a Line Segment Detector (LSD) [35] on

the filtered image. After doing this, we retain the feature

points on vertical edges only. We only detect lines greater

than a specific length, at an angle of approx. 90 degrees and

between 1 meter and 4 meters due to good depth available

in this range from the stereo camera.

Now, we have a set of n interest points, P = P1, P2, ..Pn

from the image. Each point belongs to a vertical edge.

Knowing the depth, focal length and base line, we can

compute the world coordinates of each feature point in the

camera coordinate system [36]. Knowing the pose of the

robot obtained from visual and wheel odometry in the global

coordinate frame, we can compute the global coordinates of

each point detected as shown in Figure 5. Now, we have a

set of n global world coordinates of the interest points P ;

lets call these transformed points as W = W1,W2, ..Wn,

where Wi = (xwi
, ywi

, zwi
). Since its a ground robot (2D

case) we only care about the x and y coordinates. For the

interest points as shown in Figure 2, say each of these

landmarks/interest points, L = L1, L2...Lm have world co-

ordinates as Lj = (xlj , ylj ). We know these location of the

landmarks as we have the ground truth occupancy map, so

we can estimate the absolute values of these landmarks with

respect to the start position of the robot. From the set W , we

find the closest point, Pi for each of the landmarks, Lj based

on the distance metric
√
(xli − xwi)

2 + (yli − ywi)
2. Now,

we have m points which are closest to each of the land-

marks. We have the distance error metric for each of these

points to landmark assignment. Let the error in distances be

E = (e1, e2, ...em). From the given map, we make a set of

pairs of landmarks that are adjacent to each other. Figure 2

shows 16 landmarks and 4 zones, so we make the pairs in

each zone, e.g., (L1, L2); (L2, L3); (L3, L6); (L4, L5) as in

Figure 4 depending on the distance between 2 landmarks in

a particular zone. Now, for each pair (Li, Lj), we compute

the quality of the matched point’s distance as (ei, ej). If

both ei and ej are less than an empirically determined

threshold, β then we consider that as a good pair and the

corresponding matched points as good matches. Now, we

update the absolute robot pose based on these two landmarks

using triangulation [37]. Doing the update at this stage gets

rid of any previously accumulated errors due to wheel and

visual odometry. Algorithm 1 formulates this.

Algorithm 1 Pseudocode for Global Pose Refinement
Input:
- Set of n Key Points’ world coordinates w.r.t. camera frame, Pc =
{pc1 , pc2 , ..., pcn} ; pci = (xpi , ypi , zpi)
- Set of landmark coordinates, L = {L1, ..., Lm}; Li = (xlj , ylj )
- Pairs of adjacent Landmarks in zone k, Lkpairs =
{(L1, L2), (L2, L3)...(Li, Lj)}
- Zone number, k
- Empirically determined threshold, β

Output:
Refinement succeeded or not
Refined robot pose, R : (xrefined, yrefined, θrefined)

Procedure 1, Global Pose Refinement:
1. W = GlobalCoordinatesOfPoints (P )
2. C = (CL1, CL2, ..CLm), set of closest points to landmarks
3. E = (eL1, eL2, ..eLm), errors of closest points to landmarks
4. for Li ∈ L do
5. min = inf
6. for Wj ∈W do
7. ei =

√
(xli − xwi)

2 + (yli − ywi)
2

8. if ei < min
9. min = ei
10. CLi = Wj

11. for (Li, Lj) ∈ Lkpairs do
12. if ei < β & ej < β

13. update pose wrt to Li,Lj using triangulation
14. else
15. do not update robot pose
16. return robotpose

Procedure 2, Global Coordinate of Point (P):
1. for pci ∈ Pc do
2. Wk = GlobalCoordinates(Pi) using Figure 5
3. return W = W1,W2, ..,Wn;Wi = (xwi , ywi , zwi)

IV. EMPIRICAL SYSTEM PERFORMANCE

In this section, we describe our generated dataset and

provide a detailed analysis of our results. Our algorithm

was deployed on a mobile robot in a real world environment

in a university corridor. To validate our proposed approach

we developed a dataset for the purposes of localization of

mobile robots in dynamic environments. We first describe
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our generated dataset and later describe the localization

results we obtained. The number of dynamic agents in the

scene are varied and an empirical performance analysis is

reported.

A. The Dataset

Several datasets exist for computing the localization of a

mobile platform equipped with vision sensors. Strum et al.

[38] built an RGB-D dataset in indoor environments (indus-

trial hall and office scene) to evaluate visual odometry where

they generated ground truth from motion capture systems.

Their dataset was built using a handheld Kinect sensor in

indoor environments, which for most of the sequences have

no presence of humans/dynamic agents or are sparsely pop-

ulated by one or two people. Smith et al. [39] built a SLAM

dataset using a laser, stereo and omni directional cameras in

a university environment outdoors. Their dataset was built

while the robot was driving several kilometers through a park

and university campus. It was built using a segway robot

equipped with the sensors like IMU, GPS, stereo, omni-

directional, panaromic cameras and Lasers. This dataset also

does not have a lot of humans/dynamic agents moving in the

environment. One of the most famous benchmarks for ego-

motion estimation in outdoor environments (for autonomous

driving) is the KITTI dataset [40] which is also sparsely

dynamic. As there is not a dataset having a high number

of dynamic agents in the scene, we built a new dataset to

validate our approach.

Now, we describe our dataset to address the shortcomings

of existing datasets. We build a dataset which has many dy-

namic agents (humans) navigating in the scene in an indoor

office-like corridor of size 18m x 18m. Our dataset was built

using a mobile ground robot in a university environment.

The dataset was created using a Pioneer 3AT robot using on

board stereo vision sensors (ZED stereo camera) with wheel

odometry. While building this dataset, the robot was driven

manually to evaluate the localization framework. Our dataset

consists of wheel odometry information obtained from the

mobile base, stereo image pairs and a depth image from a

ZED stereo camera. The images were captured with a 720p

resolution (1024 x 720) RGB stereo camera at a frame rate

of 30 fps. The camera was mounted on the robot at a height

of 76 cm above the ground plane. Images in the dataset

were taken indoors during night time in the winter season

(January 2018). We created 5 different types of sequences:

• Type 1 is the situation of with no dynamic agent present

in the scene, only the static scene

• Type 2 indicates the situation where there is only one

person in the environment

• Type 3 implies presence of one or two people

• Type 4 implies presence of at most 3 people, and

• Type 5 implies presence of at most 4 people.

Each situation differs from the other in terms of the number

of dynamic agents and pose changes. The data acquisition

Figure 6. An analysis about the percentage of times wheel odometry is
used and when visual odometry can be relied on. Experiments performed in
a university corridor. (i): Static environment without any dynamic agents,
(ii): Dynamic environment with at most one person in the scene, (iii)
Dynamic environment with at most 2 people in the scene, (iv) Dynamic
Environment with at most 3 people in the scene, and (v) Scene with at
most 4 people present.

phase was spread over a week. Each sequence has 6000-

8000 images. Some sample sequences from our dataset

can be seen in Figure 1. We make the dataset and demo

video publicly available for download at the project web-

page3. The ground truth, map coordinates and interest points

coordinates are also available at the project page.

B. Results

We validate our approach through a set of controlled

experiments to have a quantitative analysis using our dataset.

We show how performance varies as the number of dynamic

agents present in the scene are changed.

We compute the localization errors of the robot in the

presence of dynamic obstacles and compare it to that when

the robot moves in the static environment and with the

ground truth. We report the performance of our approach

on 5 different sequences in our generated dataset. The

sequences differ in the number of humans present in the

scene. Varying the number of dynamic agents in the scene

implies varying the number of dynamic and static visual

features present in the environment. As the number of

dynamic agents increases the number of static visual features

decreases and robot may not be able to trust its vision for

estimating its pose, hence in such cases wheel odometry

comes to our rescue. Wheel odometry is transiently relied

on under such circumstances. On the other hand, with no

dynamic agents present in the scene, the dependence of the

robot on visual odometry is maximum and wheel odometry

is minimally used. Some of the situations where wheel

odometry is solely relied on include when a particular person

blocks the view of the camera, too many moving agents

in front of the camera limiting visibility of static content,

robot facing a blank featureless wall/door, motion blur,

etc. Figure 6 shows the proportion of times when wheel

and visual odometry is relied on under varying dynamic

agents. To avoid accumulation of errors, we do a global

pose refinement based on landmarks from the 2D map.

3http://jtl.lassonde.yorku.ca/2018/03/localization-among-humans/
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(a) (b) (c)

(d) (e) (f)

Figure 7. Trajectory of our approach against (i) wheel odomery, (ii) visual odometry (method proposed in [19]), (iii) visual + wheel odometry, (iv)
visual + wheel odometry + global-refinement, and (v) ground truth (a) Type 1 (no people), (b) Type 2 (one person), (c) Type 3 (two people), (d) Type 4
(three people), (e) Type 5 (four people), (f) sum of squared errors of 4 corners and the terminal point of the trajectory with the ground truth. Due to global
refinement we correct the pose and remove any accumulation of error due to both wheel and visual odometry which gives us a better trajectory closer to
the ground truth. As can be seen as the number of dynamic agents are increased quality of traditional visual odometry approach reduces, however using
our approach we maintain a good alignment with the ground truth. The performance of VO with 3 people is worse than with 4 people as in the 3 people
sequence, people were closer to the camera more often thereby reducing the percentage of static features

As opposed to traditional loop closure techniques, we do

not need to visit the place once to perform a refinement.

Knowing the map and a few interest points, the robot knows

when to perform a refinement. Our approach runs at 25 fps

in real time.
We report the trajectory that the robot takes based

on its visual odometry and compare it to the follow-

ing: (i) Wheel Odometry alone, (ii) Visual Odometry

alone, (iii) Wheel+Visual Odometry, (iv) Our Approach

(Wheel+Visual+Global-Refinement), (v) Ground Truth. Fig-

ure 7 shows the trajectory under each of the approaches, it

can be seen that our approach performs better than visual

or wheel odometry alone. Ground truth was generated by

driving the robot on a predefined path (the coordinates of

which were known ±7.5cm).

V. CONCLUSION

In this paper, we presented an approach as to how standard

localization techniques can be extended to deal with dynamic

agents present in the scene. One of the existing localization

algorithms was chosen and integrated with our proposed

refinements. An empirical analysis was performed to see

how the task of localization differs in a static environment

to that of a dynamic environment as number of people in the

scene are increased. Some of the future works include inte-

grating this approach with a navigation approach to have an

autonomous agent navigating among humans. In this work,

only one of the current localization approach was built on

top of. Our proposed additions to the localization framework

can also be applied to other localization techniques and an

analysis can be done on the performance of other existing

algorithms as to how they perform in a dynamic context

after incorporating our integrations. In this work, we showed

experimental analysis in a single environment. We plan to

validate our approach in different environments in future.
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