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Abstract—Person following behavior is an important task for
social robots. To enable robots to follow a person, we have to
track the target in real-time without critical failures. There are
many situations where the robot will potentially loose tracking
in a dynamic environment, e.g., occlusion, illumination, pose-
changes, etc. Often, people use a complex tracking algorithm
to improve robustness. However, the trade-off is that their
approaches may not able to run in real-time on mobile robots.
In this paper, we present Selected Online Ada-Boosting (SOAB)
technique, a modified Online Ada-Boosting (OAB) tracking
algorithm with integrated scene depth information obtained
from a stereo camera which runs in real-time on a mobile
robot. We build and share our results on the performance of
our technique on a new stereo dataset for the task of person
following. The dataset covers different challenging situations
like squatting, partial and complete occlusion of the target
being tracked, people wearing similar clothes, appearance
changes, walking facing the front and back side of the person
to the robot, and normal walking.

Keywords-Online Ada-Boosting, real-time tracking, person
following robot

I. INTRODUCTION

Person following robots need a robust and real-time

algorithm to solve the tracking problem in a dynamic en-

vironment which may encounter unexpected circumstances;

for example, the tracking target might be occluded by other

instances, the lighting condition in the scene might change

rapidly, and the target might change its pose dramatically

(eg: squat down and pick up something from the floor or

removing a bag from the person (see Figure 1)). To the

best of our knowledge this is the first work which can

handle situations when two people are wearing the same

clothes and the tracker can still track the correct target

under partial and complete occlusions in the context of

person following robots; it can also deal with appearance

changes, like removing a jacket, the tracker still tracks the

target (human) and not the jacket. Another challenge is

maintaining a given distance from the robot to the target, a

natural consequence of following behaviour of the robot. The

robot being used here is the Pioneer 3AT robot as shown in

Figure 5. The main contributions of this paper are as follows:

(i) a novel approach building on the Online Ada-Boosting

∗Denotes equal contribution
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Figure 1. Different cases that our approach (Selected Online Ada-
Boosting) can handle. (a) picking bag. (b) wearing bag. (c) sitting. (d)
squatting. (e) illumination. (f) side facing. (g) partial occlusion. (h) complete
occlusion. (i) standing side-by-side with the same clothes. (j) front crossing
with the same clothes. (k), (j) appearance changed.

tracker, (ii) a novel algorithm named Selected Online Ada-

Boosting which can run in real-time to follow a given target

and is more robust than the current state of the art for person

following robots (see Figure 1), (iii) a novel stereo dataset

of different indoor environments for person following. We

first describe the relevant work being used for the person

following behavior and explain the Online Ada-Boosting

approach in Section II. In Section III, we describe our

proposed approach which modifies the Online Ada-Boosting
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algorithm to make it more robust. Section IV describes

the system design of the proposed approach. In Section V,

we provide the experimental results of our approach and

describe the dataset. Finally, Section VI concludes the paper

and provides possible future work.

II. RELATED WORKS

For person following robots, detecting and tracking hu-

mans is an important task. Dollar et al. [1] provide a survey

on state of the art human detection papers. Here we describe

approaches for person following robots using tracking and

depth detection which is the major focus of this work.

A. Real-Time Tracking for Person Following Robots

In 1999, Ku et al. [2] attached a rectangular shape to

the back of the person as the interest region with a partic-

ular color. Their method could solve the simple detection

problem, but it did not provide any robustness. In 1998,

Piaggio et al. [3] started using optical flows for a person

following robot. Similar work was done in [4] and [5] as

well. However, optical flow has the restriction that the person

and background must have different motions which are not

always the case. In 2003, Beymer et al. [6] used wheel

odometry to subtract background motion and estimate the

person location. However this only works well on uniform

surface. In 2003, Tarokh et al. [7] used colour and shape

of the person’s clothes as features for detection. Although

their method improved the robustness over Ku et al. [2], they

did not consider situations when the target changes his/her

appearance heavily. In 2006, Yoshimi et al. [8] used feature

points (edges or corner points) detection and combined the

pre-registered color and texture of the clothes. This method

provided good robustness when the person is making a turn

or walking in upright poses. In 2007, Calisi et al. [9]

used a pre-trained appearance model to detect and track the

person. Their method could provide a good tracking result

if they trained the model well enough with a lot of data.

However, dynamic environments are unpredictable, and the

target might change appearance from time to time. Similarly,

in 2007, Chen et al. [10] used sparse Lucas-Kanade features

to track the target. But the features could be lost if the person

is turning, or changing appearance. Again in 2007, Takemura

et al. [11] used H-S Histogram in hue-saturation-value

(HSV) color space, where HSV is robust to illumination

since V (lightness) can be considered separately. In 2009,

Satake et al. [12] used depth templates and SVM to train a

human upper body classifier to track the person. However,

this method did not handle cases, such as crossing, partial

occlusion, etc. In 2010, Tarokh et al. [13] used HSV and

controlled the light exposure to handle light variations. An

update was made in 2014 to improve the following speed

[14]. Some other fundamental feature tracking algorithms

were also used in later literature, e.g., SIFT feature based

[15] in 2012, HOG feature based [16] in 2013 and [17] in

(a) (b) (c)

(d) (e) (f)

Figure 2. OAB updating process: (a) yellow box is the target region, the
red box is the search region. (b) is the next frame. (c) is searching and
evaluating the patches in the search region. (d) is the confidence map of
the evaluation. (e) is the best matching with minimum error. (f) update the
classifier with positive and negative patches. After (f) then go back to (a)
to search in the next frame. Similar to [20], [21]

2014, etc. In the latest work (2016), Koide et al. [18] applied

height and gait with appearance features for person tracking

and identification, but height and gait are only limited to

the target walking in an upright position. The method is

not robust when the target changes its clothes or puts on a

backpack ( [19] also has this problem).

B. Depth detection

In this paper, we use depth to assist the tracking model

for improving the reliability. Yoon et al. [22] gained aid

from depth information to improve the computational speed

and accuracy. Depth could also help with background and

foreground issues by eliminating the sudden depth changing

pixels, e.g., occlusion. Doisy et al. [23] used the Kinect

camera and a laser sensor to propose an algorithm which

solves the person depth information for person following.

Bajracharya et al. [24] used depth from a stereo camera for

detecting and tracking pedestrians in outdoor environments.

Nowadays, there are many different types of depth sensors

in the market. In the modern publications, researchers prefer

RGB-D cameras, eg: Kinect [25], ASUS xTion [19] and

[22]. These cameras provide very good depth information

only if the robot is running indoor without strong sunlight.

Our approach uses a Point Grey Bumblebee 2 stereo camera

which can be used both indoors and outdoors. Laser sensors

provide another approach to detect depth [16] and [17]. But

a laser sensor is expensive and often not permitted in places

like hospitals, universities, malls and other similar places.

To obtain the depth information of each pixel in an image,

we use a stereo image based algorithm to compute the depth.

Since focal length and baseline are constants in a single
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stereo camera, we are only interested in disparity [26].

C. Online Ada-Boosting (OAB) Tracker

Boosting algorithms have been used in many areas in

machine learning and computer vision ( [27], [28], [29],

[30]). Boosting usually trains with offline datasets. Online

Ada-Boosting algorithm for tracking an object in real-time

has been described by Grabner et al. in [20] and [21]. To

achieve real-time tracking, Grabner et al. used Haar wavelet

features to improve robustness when appearance changes

gradually, which was described by Wang et al. in [31].

In OAB, the tracking target is assumed to be given in

the first frame (selected by human or detected by an off-

line detection algorithm). The selected patch is used as a

positive example to train the classifier. Then random patches

are extracted from four regions (upper right, upper left,

bottom right, bottom left, see Figure 2(f)) in the search

area as negative examples. These random patches contain

negative features, e.g., windows, wall, furniture, etc. An

initial classifier is trained from these positive and negative

patches. In the second frame, the target is detected using

the classifier. The patch in the search region with minimum

error is the best responding example. This patch is used as a

positive example and the surrounding random patches from

the four regions as negative examples to update the classifier.

The steps performed on the second frame are continued on

the subsequent frames (see Figure 2).

In order to achieve real-time boosting, OAB does not

use all weak classifiers to calculate a strong classifier [21].

Instead, it selects N weak classifiers from all M global weak

classifiers. In the following equations, Hweak is the set of

all weak classifiers, Hselected is the set of selected weak

classifiers from Hweak, y is the prediction of boosting, and

αn is the weight of each selected classifiers.

Hweak = {hweak
1 , ..., hweak

M } (1)

Hselected = {hselected
1 , ..., hselected

N } (2)

hselected
n = hweak

m (3)

y =
N∑

n=1

αn ∗ hselected
n (4)

αn in Equation 4 is calculated according to the error of

selected weak classifier hselected
n .

III. APPROACH

To the best of our knowledge, this is the first paper

that introduces the Online Ada-Boosting tracking algorithm

(OAB) [21] for a person following robot. On top of the

OAB algorithm, we add a depth image as an additional

tool to assist the Ada-Boosting approach. We call this new

modification as Selected Online Ada-Boosting (SOAB).

A. Computing depth from stereo images

The depth of each pixel can be easily calculated from the

following equation [32]:

Z =
fB

xl − xr
(5)

f is focal length. B is the baseline. xl and xr are the left

and right image coordinates.

B. Classifier initialization

[20] and [21] initialized the first frame with a human

to draw the bounding box. Here we present two ways to

initialize the target to the tracker: user defined and a pre-
defined bounding box.

For the pre-defined case, a bounding box was placed in

the center of the image frame. The target has to walk into

the bounding box at a particular distance from the robot.

If all these conditions are satisfied, then the robot starts

to initialize the classifier and follows the person. In our

experiment, we draw a bounding box at pixel coordinates

(272, 19) with the width equal to 100 pixels and the height

as 390 pixels, and the default disparity is 200 (this is the

initial disparity for the first frame).

For the user defined case, we do it as follows. Since the

initial position of the person is known, and the depth image

is given by equation 5, we can estimate the initial disparity of

the person easily. Here we need to overcome a big problem:

the depth image is very noisy (see Figure 3(a)). Let the initial

patch be called Ip. We sort the pixels in Ip according to their

disparity value (Note: the larger the disparity, the closer the

distance. See equation (5)). Then we remove the disparities

before 50th percentile and remove the disparities after 75th

percentile. After that, we compute the mean of the remaining

disparities as the initial depth. This method works, because

the body of our target will almost fill the whole initial patch

from our experiments (see Figure 3(b)), and noisy disparities

would not be more than 25% in the initial patch. Removing

75% of the disparities will give us a precise result. This

was found experimentally that retaining the disparities in

(a) (b)

Figure 3. (a) normalized disparity image. (b) image from the left camera.
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Figure 4. Proposed Approach: Tracking Module and the Control Module

this range gives best performance. In next subsection III-C,

we will discuss when to update the classifier.

C. Selected Online Ada-Boosting (SOAB)

In this section, we will describe how to optimize OAB

with given depth information on each pixel from Sec-

tion III-A.

One of the weaknesses of the OAB algorithm is that the

target might not always maintain the same size in the scene.

The size of the target could be changed when it is occluded,

changing poses, or tracking improperly in the current frame

(see Figure 1). These weak detections pollute our classifier

badly. Once the classifier adapts to those unwanted features,

the tracker looses the target easily. Here unwanted features

include background and foreground features. So, the depth of

each pixel plays a significant role to calculate the proportion

of unwanted features in the current positive patch. We call

this proportion the depth ratio, R. Before computing this

depth ratio for the positive patch, we need to determine

where our target is in the previous frame (here we focus

on the distance between the robot and the person).

Once the initial disparity (called preDisp) is computed

from Section III-B , we estimate the disparity in the second

frame. To do this, we run the original OAB algorithm to

detect the positive patch in the second frame. Assuming

that the displacement of the target can not be more than

a threshold β (on the Bumblebee Camera, we use β =
15), the possible disparities that belong to the person are

preDisp ± β. Then we compute the mean of the pixels in

preDisp±β range as the current disparity (called curDisp).

We assign curDisp to preDisp and repeat this for later

frames to perform tracking.

curDisp = Mean(Ip[Ip ∈ preDisp± β]) (6)

The next step is to update the classifier. We do this

differently than OAB. We introduce the depth ratio R to

evaluate the current positive patch containing a minimum

Data: CameraStream

fetch left and right image from CameraStream;

select target to track;

calculate curDisp;

preDisp← curDisp;

pre-train OAB;

while true do
fetch left and right image from CameraStream;

run OAB to extract a positive patch Ip;

curDisp←Mean(Ip[Ip ∈ preDisp± β]) ;

R←
∑

[Ip∈preDisp±β]
w∗h ;

if R ≥ γ then
update the classifier;

end
preDisp← curDisp;

end
Algorithm 1: SOAB

amount of unwanted features. R equals the ratio of the

number of pixels that are used to calculate curDisp to that

of the total number of pixels in the current patch. The width

of patch Ip is w, and the height is h.

R =

∑
[Ip ∈ preDisp± β]

w ∗ h (7)

Now our algorithm (SOAB) makes the decision. If the

depth ratio R is greater than a threshold γ, then we update

the classifier using the current positive patch. Otherwise, we

do not update the classifier.

IV. SYSTEM DESIGN

In this part, we describe the design of our system. Here

we use a Pioneer 3AT robot (see Figure 5.) which is a four

wheeled differential drive robot with an on-board computer.

It is configured with a Point Grey Bumblebee Stereo Camera

which acts as the only sensor on the robot to sense its

environment. The system is built using the robot operating
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system (ROS) to integrate different components involved in

the system. Figure 4 gives an overview of our system design.

Initial components of the system are responsible for

tracking the target (human) and computing the centroid and

depth of the target being tracked. Based on these values,

the control module computes the corresponding linear and

angular velocities for the robot (see Figure 6). The controller

maintains a predefined distance from the human being

followed. It is ensured that the centroid of the human target

bounding box is always near the centre of the image within

a pre-specified area. This is done by simply steering in

the direction to which the person is moving. If the person

appears to be moving left in the image, the robot moves

leftwards to keep the centroid of the detected human near the

center of the image. The robot maintains a set depth from the

target. If the person is moving towards the robot, the robot

moves backward and vice versa. The linear velocity of the

robot is a function of the disparity alone and the angular

velocity is a function of the x-coordinate of the centroid

of the human being tracked (see Figure 6). These functions

were obtained experimentally and would change with the

change in the robot platform.

We run this system on a laptop with Intel core i7,

2nd Generation, 2.5GHz processor and 16GB RAM (the

requirement is lower for our algorithm). The design of

various components involved here is presented in Figure 4.

V. EXPERIMENTS AND EVALUATION

Since the proposed method is different from what people

did in the past, we could not find an existing dataset which

satisfies our need (a stereo dataset for a human following

robot under challenging situations). As a result, we build a

dataset of 4 image sequences to test the robustness of the

person following robot system. The person being followed in

our dataset exhibits varying motions and challenging poses

in different indoor environments (see Figure 1). The dataset

is built from image sequences captured by the robot in

these places. The robot is following a person in a university

Figure 5. Pioneer 3AT robot mounted with a Point Grey Bumblebee stereo
camera.

(a) Linear velocity vs. Disparity Plot

(b) Angular Velocity vs. centroid of the target

Figure 6. Controller Module of our system. (a) The function represents
the linear velocity as a function of the target’s disparity in the current frame
(b) represents the angular velocity as a function of the x-coordinate of the
centroid of the target

hallway, a living room, and a lecture hall. We make the

dataset of these three places publicly available at our project

page1. We provide ground truth for our dataset which has

the bounding box drawn on the target being tracked. Demo

videos of the robot following behavior of our proposed

approach can also be found at the project page1. The

dataset consists of the person being followed under varying

illumination conditions, different poses of the person being

followed, partial and complete occlusion of the person being

followed and multiple people present in the scene. The

resolution of the images is 640 ∗ 480 pixels in our dataset.

We are able to track people while the robot is moving at up

to speeds of 0.70 m/s. It should be noted that our proposed

system could be deployed on any mobile robot platform. We

tested our proposed approach on a Pioneer 3AT robot (see

Figure 5). Our algorithm can run in real-time at a frame rate

of 15fps on a single CPU core.

First, we tested our algorithm on an experimental se-

quence of images. The target in the sequence is turning

around, and squatting down (see Figure 8). From the result,

we could distinguish that SOAB with depth ratio threshold

γ = 0.60 outperforms the original OAB. By selecting the

patches to update the classifier does make a huge improve-

ment. In Figure 8(f), OAB did a mistake and updated the

classifier. The classifier then learned the background as the

1http://jtl.lassonde.yorku.ca/2017/02/person-following
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(a) Sequence Hall Way (b) Sequence Multiple Crossing (c) Sequence Same Clothes Crossing

Figure 7. The graphs are comparing the accumulated square error on three different image sequences captured in different places and the target acted
very differently.

important feature and as a result continuously made mistakes

in later frames. On the other hand, SOAB avoids this

problem by using the depth information to make decision on

whether or not to update the classifier. We also select a depth

ratio threshold γ = 0.80 for testing. Since the threshold is

too high, SOAB skipped most of the frames. This is not how

we want SOAB to behave. In the later experiment, we fixed

the depth ratio threshold as 0.60.

We made another image sequence to test more challenging

scenarios. The target is picking up a backpack from the

ground, and someone is passing between the robot and the

target in the sequence (see Figure 9). Again in this test

case, SOAB achieved the best result overall. Comparing

Figure 9(b), OAB learnt the background features leading

to a mistake in Figure 9(c). From Figure 9(e-g), OAB

learned the features of the crossing person. The second

person became the target of the OAB tracker. Since the

depth information is used as a gate, SOAB did not update

the classifier with unwanted features when depth ratio is

less than the threshold. Figure 7(a) shows the accumulated

square error of OAB and SOAB. The green line in the graph

increases very smoothly meaning that SOAB performed very

well without losing track. But, OAB looses track at about

frame 900 and becomes very unstable later, roughly at the

occlusion in Figure 9(f).

Another image sequence was made to test multiple cross-

ing with different speed. The comparison between OAB and

SOAB can be seen in Figure 7(b). There are 12 crossing

actions in this sequence. SOAB completed this test case

without failure. But, OAB failed after the fourth crossing.

The third sequence is for testing when two people are

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 8. (a-g) is tracking using original OAB algorithm. (h-n) is tracking
using SOAB with depth ratio threshold γ = 0.30. (o-u) is tracking SOAB
with with depth ratio threshold γ = 0.60.

wearing the same clothes. This sequence is the most signifi-

cant one in our dataset. The result can be seen in Figure 7(c).

In this sequence, two people are crossing each other, walking

in a circle. As expected, the robot is following the same

person all the time using SOAB.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Figure 9. Red box is tracking using original OAB algorithm. Yellow box is tracking using SOAB with depth ratio threshold γ = 0.60. (a-h) are sequences
from a hallway. (i-n) are sequences from a lecture hall. (o-t) are sequences showing crossings with same clothes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described a robust person following

robot system using a modified version of Online Ada-

Boosting algorithm with only a stereo camera. The system

was optimized to perform well in a dynamic environment.

Our modified version of OAB performs much better than

the original algorithm (see Figure 7). We handled difficult

situations dealing with similar clothes of people crossing,

appearance changes in terms of removing the target’s jacket,

partial and complete occlusions and were able to run our

approach in real-time on a mobile robot. It should also be

noted that even though we present our approach for the

human following robot, this can be applied to any object

following robot as well, but the object needs to be known

a priori. For instance the robot can follow objects like a

handbag, shopping cart, an animal (cat/dog), etc. In this

sense our approach targets not only the human following

task but also generalizes to other objects as well.

We proposed changes to the OAB algorithm. We believe

that there could be further improvements, e.g., using a more

robust online boosting tracking algorithm called Online Mul-

tiple Instance Learning [33], or increasing the classification

error if the bounding box jumps unstably from frame to

frame. Another possible future work would be to include

the recognition aspect by making use of a human detector

to aid in the process of having a better model for the

classifier. Another approach of making the following system

more reliable could be adding a path planning and obstacle

avoidance strategy to the robot control module in our system.
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