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ABSTRACT 

The goal of the investigation is to determine whether information about which 

particular developer modified a file and the cumulative number of developers 

changing the file are able to improve defect predictions. We investigate 

whether files in a large system that are modified by an individual developer 

consistently contain either more or fewer faults than the average of all files in 

the system. We also continue a study to evaluate the use of counts of the 

number of developers who modified a file as predictors of the file’s future 

faultiness. We also continue an earlier study to evaluate the use of counts of 

the number of developers who modified a file as predictors of the file’s future 

faultiness. 
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1. INTRODUCTION 

 Bug prediction has generated widespread interest for a considerable period of time. The 

growth of empirical software engineering techniques has led to increased interest in bug prediction 

algorithms. These algorithms predict areas of software projects that are likely to be bug-prone: areas 

where there tend to be a high incidence of bugs appearing (these are also sometimes called fault-

prone areas).  

  

 The driving scenario is resource allocation: Time and manpower being finite resources, it 

makes sense to assign personnel and/or resources to areas of a software system with a higher 

probable quantity of bugs. A variety of approaches have been proposed to tackle the problem, 

relying on diverse information, such as code metrics (lines of code, complexity), process metrics 

(number of changes, recent activity) or previous defects. Previous research has provided evidence 

that a combination of static code metrics and software history metrics can be used to predict with 

surprising success which files in the next release of a large system will have the largest numbers of 

defects. In contrast, very little research exists to indicate whether information about individual 

developers can profitably be used to improve predictions.  
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2. PRIOR WORK  (RELEVANT WORK): 

Static code metrics:  

 A growing number of studies have been carried out on the subject of automated software 

defect prediction using static code metrics. Such studies typically involve observing the performance 

achieved by classifiers in labelling software modules (functions, procedures or methods) as being 

either defective or otherwise. Although such a binary labelling toward module defectiveness is 

clearly a simplification of the real world, it is hoped that such a classification system could be an 

effective aid at determining which modules require further attention during testing. An accurate 

software defect prediction system would thus result in higher quality, more dependable software 

that could be produced more swiftly than was previously possible. 

 The predictions that are made in typical defect prediction studies are usually assessed using 

confusion matrix related performance measures, such as recall and precision. In some studies a 

defect prediction experiment was carried out to allow a manual Analysis of the classifications made 

in terms of each module's: original metrics, corresponding classification result (one of either: true 

positive, true negative, false positive or false negative) and corresponding decision value; a value 

output by the classifier which can be interpreted as its certainty of prediction for that particular 

module. The experiment carried out involved assessing the performance of Support Vector Machine 

(SVM) classifiers against the same data with which they were trained. The purpose of this was to 

gain insight into how the classifiers were separating the training data, and to see whether this 

separation appeared consistent with current software engineering beliefs (i.e. that larger, more 

complex modules are more likely to be defective. 

Change Bursts: 

 In an empirical study on Windows Vista, researchers found that the features of such change 

bursts have the highest predictive power for defect-prone components. With precision and recall 

values well above 90%, change bursts significantly improve upon earlier predictors such as 

complexity metrics, code churn, or organizational structure. As they only rely on version history and 

a controlled change process, change bursts are straight-forward to detect and deploy. 

 

 

 

  



9 
 

3. DATA EXTRACTION 

Initial part of the project focuses on data extraction. Following options exist for extracting data 

 Writing scripts in languages like R or Python 

 Using Data extraction tools available on www.Bugzilla.com 

We here extract data using R scripts. We have chosen R as the data extraction tool due to the 

numerous libraries available in R.   

R Code Explanation 

Initially we get the data from the URLS. We initially import the required libraries. Here we extract 

data from 11 pages at one time. This takes 3-4 minutes to get the entire data from the 11 URLs. 

Following is the code to assign appropriate URLS for the project ‘lucene-solr’:  

  library(httr) 

  url0 = "https://github.com/apache/lucene-solr/commits/trunk?page=33" 

   

  url1 = "https://github.com/apache/lucene-solr/commits/trunk?page=34?" 

  url2 = "https://github.com/apache/lucene-solr/commits/trunk?page=35?" 

  url3 = "https://github.com/apache/lucene-solr/commits/trunk?page=36?" 

  url4 = "https://github.com/apache/lucene-solr/commits/trunk?page=37?" 

  url5 = "https://github.com/apache/lucene-solr/commits/trunk?page=38?" 

 

  url6 = "https://github.com/apache/lucene-solr/commits/trunk?page=39?" 

  url7 = "https://github.com/apache/lucene-solr/commits/trunk?page=40?" 

  url8 = "https://github.com/apache/lucene-solr/commits/trunk?page=41?" 

  url9 = "https://github.com/apache/lucene-solr/commits/trunk?page=42?" 

  url10 = "https://github.com/apache/lucene-solr/commits/trunk?page=43?" 

 

# update, fix, add, modify, execut,  

Now we iterate over the 11 entries in the for loop, after each iteration we get approximately 400 
commits. So after running this code once we get approximately 4000 commits. 

for(i in 1:10) 

{ 

  if(i==1) 

http://www.bugzilla.com/
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  { 

    html2 = GET(url0) 

  } else if(i==1) { 

    html2 = GET(url1) 

  } else if(i==2) { 

    html2 = GET(url2) 

  } else if(i==3) 

  { 

    html2 = GET(url3) 

  }else if(i==3) 

  { 

    html2 = GET(url3) 

  }else if(i==4) 

  { 

    html2 = GET(url4) 

  }else if(i==5) 

  { 

    html2 = GET(url5) 

  }else if(i==6) 

  { 

    html2 = GET(url6) 

  }else if(i==7) 

  { 

    html2 = GET(url7) 

  }else if(i==8) 

  { 

    html2 = GET(url8) 

  }else if(i==9) 

  { 

    html2 = GET(url9) 
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  }else if(i==10) 

  { 

    html2 = GET(url10) 

  } 

 

Following part of the code is used to get the sha s from the source code of the page that is stored in 
html2 variable. We then parse the source code using htmlParse function.   

  library(XML) 

  parsedHtml = htmlParse(html2,asText=TRUE) 

  shaz <- xpathSApply(parsedHtml,"//div//div//button",xmlGetAttr,"data-clipboard-text") 

  library(stringr) 

Following is the URL used to extract the required information about the files, their committers, the 
commit message, etc. Here initially we faced an issue with the rate limit. Github allows 60 requests 
per hour for unauthenticated requests and allows upto 5000 request per hour for unauthenticated 
requests. The process of authentication is done by generating an access token from a registered 
github account and then copying the access token generated at the end of the URL being used for 
extracting data.  

Github uses an API provided for extraction of data. We here leverage the github API in combination 
with the ‘jsonlite’ library to extract data. R provides support for this library and we here take 
advantage of this library to extract data.   

  a<-"https://api.github.com/repos/apache/lucene-
solr/commits/sha?access_token=081090653e76e914592beea67f159d6841ec1574" 

  len2 = length(shaz) 

  c_urls <- list() 

Here this loop iterates over all the urls that are generated out of the shas extracted from the content 
stored in html2 variable as discussed above. In this loop the sha is replaced by a alpha-numeric long 
string which is extracted from the information contained in html2. 

  for (i in 3:len2) 

  { 

    b<-shaz[i] 

    c_urls[i-2] <- str_replace(a,"sha",b) 

  } 

  library("jsonlite")   

  for (i in 3:len2) 
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  {   

    jsonData <- fromJSON(c_urls[[i-2]][1]) 

    len = length(jsonData$files) 

    for (i in 1:len) 

    { 

      p1 <- jsonData$commit$author$name 

      p2 <- jsonData$commit$author$date 

      p3 <- jsonData$files$filename[i]       

 

Here we take out the release dates for a given project by  going to github and check the release 
dates for that particular project. We then check the dates and compare them with the standard 
release dates and assign each file a particular release.  

We later extract commit messages for the code. We have used a simple technique of text mining. 
We check for existence of some keywords specific to a particular project. The presence of such 
keywords indicates that the commit message is due to a bug in the file. The absence of such 
keywords signifies it being an update. This information is later written in an excel files. The excel file 
has 4 columns the username, the filename, the release number and the commit nature (bug or 
update). 

      if(p2>"2014-10-30T12:00:00Z") { 

        release <- 34 

      } else if(p2>"2014-09-28T12:00:00Z") { 

        release <- 33 

      } else if(p2>"2014-09-21T12:00:00Z") { 

        release <- 32 

      } else if(p2>"2014-09-02T12:00:00Z") { 

        release <- 31 

      } else if(p2>"2014-06-24T12:00:00Z") { 

        release <- 30 

      } else if(p2>"2014-05-19T12:00:00Z") { 

        release <- 29 

      } else { 

        release <- 28 

      } 
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      p4 <- jsonData$commit$message 

      write(p4,file="C:/Users/Raghavender Sahdev/Desktop/BITS/Bug 
Prediction/lucene_solr_msgs2.csv", append=TRUE) 

      write("$$",file="C:/Users/Raghavender Sahdev/Desktop/BITS/Bug 
Prediction/lucene_solr_msgs2.csv", append=TRUE)          

      message <- p4 

      word1 <- "LUCENE-" 

      word2 <- "SOLR-" 

      word3 <- "Fix" 

      word4 <- "fix" 

       word5 <- "typo" 

      word6 <- "warning" 

      word7 <- "potential" 

      word8 <- "Warning" 

      word9 <- "Correct"  

      word10 <- "Fx" 

      word11 <- "#" 

      word12 <- "Conflict" 

      word13 <- "Fixed" 

      word14 <- "change" 

      word15 <- "Change" 

      word16 <- "error" 

      word17 <- "bugr" 

      word18 <- "Error" 

      if(grepl(word1,message)|grepl(word2,message)|grepl(word3,message)|grepl(word4,message)){ 

        answer <-"bug"   

      } else 
if(grepl(word5,message)|grepl(word6,message)|grepl(word7,message)|grepl(word8,message)|grep
l(word9,message)|grepl(word10,message)){ 

        answer <- "bug" 
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      } else 
if((grepl(word11,message)|grepl(word12,message)|grepl(word13,message)|grepl(word14,message)
|grepl(word15,message))){ 

        answer <- "bug" 

      } else if((grepl(word16,message)|grepl(word17,message)|grepl(word18,message))){ 

        answer <- "bug" 

      } else { 

        answer <- "update" 

      } 

       

      if(p1 == null) 

      p6 = paste(p1,p3,release, answer,sep=",") 

      write(p6,file="C:/Users/Raghavender Sahdev/Desktop/BITS/Bug 
Prediction/commits_lucene2.csv", append=TRUE) 

    } 

  } 

} 
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4. APPROACH: 

 

 At a time we focus on only 3 releases dubbed prior release, current release and next release. 

 We need to find out which files are buggy for which we have written a short macro which 

mines the message and uses key words like fix, bug, corrected, etc to find out whether it is a bug or 

not. 

 

 We store the User name, File name and the release number (Calculated using the commit 

date and the Dates each release has been released.) in an excel file that will be used for all further 

data manipulation.  

 

 In the prior release we associated programmers who have made changes to the file with the 

file regardless of whether the file was buggy or not.  

  

 We used the previous association in order to find the bug ratio for each programmer. Bug 

ratio is the ratio of the files a programmer has worked on in the prior release is to the number of 

those files that turn out to be buggy. We then made another association of files with the 

programmers for current release to match with the next release. We used this bug ratio in order to 

get the error quality of the programmer (5 classes). We then found the overall error possibility of all 

the files in this release by adding the error quality of programmer. Error quality is found by dividing 

the entire bug ratio domain into 5 classes on the basis of mean and standard deviation.  

 

 In the next release we look into the top 20 percent of the files in the current release which 

have the greatest error possibility. We then find out how many of these files are actually buggy. We 

calculate three accuracy ratios which give us an idea about how good our prediction model is.  

Accuracy 1: W want to look at how many bugs did we catch in top 20% of the predicted file list 

arranged in descending order with respect to the points given to each file. After arranging in 

descending order, we look at the files in top 20%. We then compare them with the total number of 

bugs in the current release of the file. 
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Accuracy 1 = (top 20 % of the files in the current release after arranging in descending order) / (all 

bugs in the current release) 

Accuracy 2: 

Suppose t1 denotes the top 20 percentage of the files in the current files, and suppose t2 denotes 

out of those 20 % of the files how many files appeared to be buggy. 

Acurracy 2 = t2 / t1 

 

5. IMPLEMENTATION: 

 

1)  Following code checks how many files have been touched by a particular user in prior release.  

Odd index in the array list contains user name and the next even index contains the files separated 

by commas of that particular user. 

for(int i=0 ; i< brr.length ; i++)  //here brr.length returns length of the number of rows 

  {if(Integer.parseInt(brr[i][2]) == PRIOR_RELEASE && 

!files_of_users.contains(brr[i][0])) 

   { files_of_users.add(brr[i][0]); 

    String temp= ""; 

    for(int j=0 ; j<brr.length ; j++) 

    { if(brr[i][0].equalsIgnoreCase(brr[j][0]) && 

Integer.parseInt(brr[j][2]) == PRIOR_RELEASE) // made change here * 

     {temp = temp + brr[j][1] + ",";} 

    } 

    files_of_users.add(temp); 

   } 

  } 

 

2) Variable files_of_users_with_number have usernames in odd indexes and names of files 

seperated by commas touched by them in even indexes. 

 

3) Variable files_of_users_with_number have usernames in odd indexes and number of files touched 

by them in even indexes. 
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4) Calculation of Bug Ratio of each user. Iterate over all prior release files of a particular user and 

then for each such iteration find the file in the current release. 

 

 for(int i=0 ; i< number_of_users ; i++)   

  { 

   buggyFiles_of_users.add(files_of_users.get(i*2)); 

   String temp2 = (String)files_of_users.get((i*2)+1); 

   String temp_buggy_files = ""; 

   StringTokenizer tkn = new StringTokenizer(temp2,","); 

   while(tkn.hasMoreTokens()) 

   { 

    String temp = tkn.nextToken(); 

    for(int j=0 ; j<brr.length ; j++) 

    { 

     // check the release of the file and check if it is of the ith contributor 

     if(Integer.parseInt(brr[j][2]) == CURRENT_RELEASE && 

temp.equalsIgnoreCase(brr[j][1]) 

     {       

      if(brr[i][3].equalsIgnoreCase("bug"))   

   { 

       temp_buggy_files = temp_buggy_files + brr[j][1] + ",";

      

       break; 

      }}}}  

5) Then associate points with all of the developers in the prior release by dividing them into 5 classes 

using mean and standard deviation.  

6) Add the points and bug ratios of developers to each file and then arrange in descending order. 

for(int i=0 ; i<users_of_files.size() ; i = i+2) 

  { 

   String temp_userNames = (String)users_of_files.get(i+1); 

   StringTokenizer break_it = new StringTokenizer(temp_userNames,","); 
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   int no_of_users = break_it.countTokens(); 

   double bratio_sum = 0.0; 

   int users_cnt=0; // here we divide to take average of the bugratios of people 

   while(break_it.hasMoreTokens()) 

   { 

    String t1 = break_it.nextToken(); 

    //System.out.println(t1+"ddsaa!@!"); 

    bratio_sum = bratio_sum + findBugRatio(username_bratios,t1); 

    users_cnt++; 

   }   

    

   String temp_fileName = (String)users_of_files.get(i); 

   //System.out.println(temp_userName+": "+no_of_users); 

      

   users_of_files_with_number.add(temp_fileName); 

   users_of_files_with_number.add(bratio_sum/users_cnt); 

  } 

 

 7) Then see how many in the top 20% of these files have bugs and few more accuracy points. 
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6. RESULTS 

We performed analysis of 3 projects using our code.  

 Lucene-solr 

 Eclipse Acceleo 

 Firefox 
 

We see that the results of our experiments to be on a lower side. Prior work through the paper 
“Programmer Based Fault Prediction”, has also shown similar results. 

We here define 2 accuracies as defined above: 

Accuracy 1: W want to look at how many bugs did we catch in top 20% of the predicted file list 

arranged in descending order with respect to the points given to each file. After arranging in 

descending order, we look at the files in top 20%. We then compare them with the total number of 

bugs in the current release of the file. 

Accuracy 1 = (top 20 % of the files in the current release after arranging in descending order) / (all 

bugs in the current release) 

Accuracy 2: 

Suppose t1 denotes the top 20 percentage of the files in the current files, and suppose t2 denotes 

out of those 20 % of the files how many files appeared to be buggy. 

Accuracy 2 = t2 / t1 

 

For lucene-solr project 

Accuracies for release 29, 30 , 31 
 
Taking the sum of bug ratios for arranging files in descending order we get 
Accuracy 1 = 5/83 = 6% 
Accuracy 2 = 5/50 = 10% 
 
For releases 30,31,32 
 
Accuracy 1 = 7/52 = 14% 
Taking the sum of bug ratios for arranging files in descending order we get 
Accuracy 2 = 7/23 = 30% 
 

For Acceleo Project 

Accuracies for release 30, 31 , 32 

Taking the sum of bug ratios for arranging files in descending order we get 
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Accuracy 1 = 5/45 = 11% 
Accuracy 2 = 5/58 = 8.6% 
 
For releases 31,32,33 
 
Accuracy 1 = 4/59 = 6.7% 
Taking the sum of bug ratios for arranging files in descending order we get 
Accuracy 2 = 9/63 = 14.2% 
 
For Firefox project 
 
Taking the sum of bug ratios for arranging files in descending order we get 
Accuracy 1 = less than 5 % 
Accuracy 2 = less than 5 % 
 
For releases 30,31,32 
 
Accuracy 1 = less than 5 % 
Taking the sum of bug ratios for arranging files in descending order we get 
Accuracy 2 = less than 5 % 
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7. CONCLUSION:  

 

We have tried to replicate the paper Programmer-based Fault Prediction on open source software. 

The paper implements their technique on proprietary software that is used in the industry we have 

tried to use the same technique on open source software like acceleo, lucene, firefox etc. Open 

source software operates with rolling releases; this means as and when a few small bug are 

corrected an update is triggered. However for more appropriate results we need to wait till 

sufficient bugs are discovered, corrected and tested before a release. Hence the results were not as 

encouraging as the paper but there exists a similarity in the results. 
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