
Student Developer: Raghavender Sahdev
Mentors: Dr. Dimiter Prodnov (INCF Belgian Node), Dr. Daniel Sage (EPFL Switzerland)
Working Period: June – August 2015
Public Repository: https://github.com/incfbelgiannode/TimeLapseReg
Project Website: http://neuroinformatics.be/timelapsereg-presented-at-the-imagej-users-
and-developers-conference-2015/

WEEK 1,2 (JUNE 1 - 14)

In the initial week a few simple Image J plugins were developed to get an idea about
creating imageJ plugins and deploying them as a jar into the ImageJ software. A simple
plugin was developed which adds 2 images and put them in a stack. The idea behind
developing such small plugins was to get use to the Image J, ImageJ APIs and libraries were
studied in the initial week.

Later, the aims, design and development of the plugin were discussed
We here aim to develop a plugin for drift correction of video sequence in time-lapse
microscopy. Initial proposal for the plugin identifies the following tasks:

- We focus on Context Ca+ imaging community.
- They need to apply a drift correction to very long sequences of noisy multichannel

images
- They have identified StackReg/TurboReg as the most accurate software package
- They require an efficient tool running on a mid-range machine (e.g laptop)
- A nice friendly user interface is required

‘They’ here refers to the biologists, potential users of our plugin and other medical experts
who would use this plugin.

Relevant Plugins
Following 2 plugins exist which we are relevant to our plugin
TurboReg – Aligns 2 images
StackReg – Does recursive alignment
We here want to develop a plugin which uses TurboReg as the computational engine and
has features that are not available in StackReg.

TurboReg/ StackReg of Philippe Thevenaz

- Java plugins of ImageJ
- TurboReg: Manual or automatic alignment of 2 images
- StackReg: Recursive (automatic) alignment of 2 consecutive frames of a sequence
- TurboReg contains the engine (computational part of the registration). StackReg uses

TurboReg
- TurboReg is not modular and not maintainable
- The geometric transformation is characterized by two sets of points (not by a affine

matrix).

https://github.com/incfbelgiannode/TimeLapseReg
http://neuroinformatics.be/timelapsereg-presented-at-the-imagej-users-and-developers-conference-2015/
http://neuroinformatics.be/timelapsereg-presented-at-the-imagej-users-and-developers-conference-2015/

Practical Limitations of StackReg
- No choice for the reference image (the reference image is the previous image)
- Require that the complete sequence fit in RAM -> impossible to process long

sequence
- Do not allow to compute the transformation on one channel and to apply it on other

channels
- No time regularization in case of registration
- Do not prevent large transformation (we know we have a small drift)
- No pre-processing to denoise the noisy image

In the project we do not change/alter the way TurboReg or StackReg work; we build our
plugin using the existing TurboReg and StackReg.

Proof of concept for a rigid body transformation

- Call TurboReg
- Referebce Image: provided as an input image
- Register 2-by-2 images, making a loop for the sequence

TurboReg_ reg = new TurboReg_();

ref.setTitle("reference");

ref.show();

int nx = ref.getWidth();
int ny = ref.getHeight();

String size = " 0 0 " + (nx-1) + " " + (ny-1) + " ";
String mark1 = " " + (nx/2) + " " + (ny/2) + " ";

String mark2 = " " + (0) + " " + (ny/2) + " ";
String mark3 = " " + (nx-1) + " " + (ny/2) + " ";
String sref = " -window reference" + size;

ImageStack stack = new ImageStack(nx, ny);
for(int i=0; i<filenames.size(); i++) {

String name = " -file \"" + filenames.get(i) + "\"" + size;
 IJ.log("Register " + filenames.get(i));
 reg.run("-align" + sref + name + "-rigidBody " + mark1 + mark1 + mark2 + mark2 +

mark3 + mark3 + "-hideOutput");
 double spts[][] = reg.getSourcePoints();

 double tpts[][] = reg.getTargetPoints();
 IJ.log(" Translation (" + (tpts[0][0] - spts[0][0]) + "," + (tpts[0][1] –

spts[0][1]) + ") ");

 double sangle = Math.atan2(spts[2][1] - spts[1][1], spts[2][0] - spts[1][0]);
 double tangle = Math.atan2(tpts[2][1] - tpts[1][1], tpts[2][0] - tpts[1][0]);

 IJ.log(" Angle " + (180.0*(tangle-sangle)/Math.PI));
 ImagePlus imp = reg.getTransformedImage();
 stack.addSlice("", imp.getProcessor());

}

new ImagePlus("Aligned ", stack).show();

Strategies for choosing the reference image
The reference image is application-dependent

- An image provided by the user(e.g. a blank microscopy image)
- The previous image (StackReg’s strategy)
- The average image of sequence
- A moving average around the target
- The brightest or the darkest image
- The first image
- Average of all the images
- ……..etc.

Drift Calculation

1. Load the target frame (image of the sequence)
2. Check the contents of the frame. Is this frame registrable?
3. If necessary, denoise the frame
4. Compute a new reference image if necessary
5. Compute the transformation (TurboReg call)
6. Exclude the non-realistic transformation
7. Store (CSV/XML/JSON) the human-readable transformation (angle, translation)
8. Store (CSV/XML/JSON) the computer-readable transformation (2 sets of points)
9. Go to 1 until the end of the sequence
10. Check the global coherence of the drift (regularization)
11. Provide a report to the user (plot of the drift, quality of registration)

Apply the transformation to multiple channels image
- Load the transformation file
- Recursively, apply it for all images and all channels

WEEK 3,4 (JUNE 15-28)

After discussing the aims and exact requirements of the plugin, our initial focus was the
following set of tasks:

1. Build a plugin to align the input stack of images and compute the transformations
and store them in a csv / JSON file

2. Build another Plugin to transform the stack of images as per the transformations
computed in the alignment step

3. Develop a plugin for simulation of the plugin to test if the above 2 plugins perform
correctly or not.

So we then focused on developing the above mentioned 3 plugins. We built the three
plugins as stated above.
TimeLapseRegAlign plugin – this plugin initially input the stack of images and called/invoked
the famous ‘turboreg’ plugin to align the image stack and compute the transformations and
store the transformations in a csv (comma separated) file. We did not go with storing the

transformations in a JSON format as csv was simple enough and fulfilled our current
requirements.

TimeLapseTransform plugin – this plugin’s basic aim was to transform the set of images in
the stack and align each of the images as per the transformations computed by the
TimeLapseAlign plugin. So this plugin read the transformations from the csv file generated
by the TimeLapseAlign plugin. Using those transformations it applied them to each of the
images and the resultant was an aligned stack.

Simulation Plugin – this plugin was developed to simulate the previous 2 plugins and check
if our proposed system is performing well. We used this plugin to simulate a sample image
and made it undergo certain known transformations and checked if we get the computed
transformations same as that being initially input to the sample image. This plugin also gave
us the limits upto which our proposed system could tolerate transformation. Example for a
sample image our system performed well in a scenario where we had transformation upto
50 pixels translation in x and 40 pixels in y and say a rotation upto 10 degrees.

WEEK 5,6,7 (JUNE 29 – JULY 17)

Before moving further we had to ensure that the simulation plugin was performing well, so
we initially focused on improving the simulation plugin. We also wanted to know the
transformation limits upto which the plugin would perform well. This meant we needed to
know the translation and rotational limits upto which we get a good aligned stack.
We considered taking a simple image and subjecting this image to predefined known
transformations (translations and rotations). We applied these known transformations to
the image and saved the frames that we got after applying each of the transformation. The
transformations were applied as follows:

1. Translation of 1px,2px,3px……40 px in x direction only
2. Translation of 1px,2px,3px……40 px in y direction only
3. Rotation of 1degree, 2 degrees, 3degrees ……10 degrees
4. Translation in x and y direction both
5. Translation in x, y direction and rotation also

It was observed that our simulation does perform well up to a certain limit which is good
enough for the medical imaging data that we focused on. A rough estimate of these values
were up to 15 pixels in x and y with a rotation of 5 degrees.
However these estimates depended on the image we chose. If we chose an image which
was much simpler such as a simple rectangle drawn in paint, we even had our plugin
perform well up to 100 pixels translation in x and y direction. So this transformation limit
really depended on the input image. But for the most difficult image that we had - a really
noisy one; we got 15 pixels in x and y and 3-4 degrees rotational limit.

We here performed a validation analysis of our simulation plugin using 3 different cases in
order of decreasing difficulty

1. Case1: A noisy image – difficult to compute
2. Case2: A less noisy image easier to compute
3. Case3: A noise free very easy image to compute

Following graphs illustrate the variation in error

Case 1

Case2

Case3

We here observe that the minimum error is observed in case3 as its not noisy and maximum
error is observed in case 1 which is a noisy image.

Once we had the simulation plugin working correctly, we knew that the limits under which
our system / plugin would perform perfectly well. We then focused on adding the following
features to the plugin:

1. Giving the user the option to input the stack of images from a specified folder path
2. Giving the option to the user to choose a reference image to which the entire stack

should be aligned
3. Discarding certain bad frames based on a specific criteria
4. Drawing a trajectory on the reference image to give the user some dynamic feedback
5. Computing transformations from one channel and applying it to another channel

6. Save the transformations so that they do not need to be computed again and again
and can be simply used by the user to apply

WEEK 8,9,10 (JULY 18 – AUGUST 9)

To implement the features discussed previously we decided to build the final version of the
plugin as a User Friendly Graphical User Interface (GUI) using the java’s swing. We put
everything that we had built so far into a GUI in order to incorporate the functionalities
discussed above.
Following figures demonstrate the plugins:

In Step 1 we give the user the functionality to input the stack of images. The user does so by
choosing the path of the folder which contains all the frames of which we want to compute
the transformations

In Step 2 the user has a number of options to choose the reference image as can be seen
above

 Specified by a position – this allows the user to specify an index number of the frame
which should be the reference image

 Specified by an opened ImageJ window – this allows the user to specify a particular
image window which is opened in Image J

 Specified by a file into the project directory – this allows the user to specify a path of
an image file which would act as the reference image for the entire input stack.

 Computed over a percentage of frames – this allows the user to choose the average,
minimum, maximum of a percentage of the entire stack of images. As an example
the user could say reference image to be the average of the first 20% of the frames
or maximum over the first 50 % of the frames

 Computed over a specified range of frames – this gives the user an option to specify
an exact frame number upper and lower limit and then the user can compute the
average, minimum or maximum over that specified range.

After this step the user can show the reference image and see if he/she likes it, if not
choose a different option and choose another image. After finalizing the reference
image the user should click on the “Accept Reference>>” button, which takes us to
step 3

In step 3, we implemented a discarding mechanism to discard a set of frames which may be
present due to some noise. We here discard based on the Mean and standard deviation of
the frames. The discarded frames essentially get rid of any noisy images which may lead to a
bad alignment so we get rid of those

In step 4, we set the translation and rotational limit upto which we would consider a specific
transformation as a valid one. All other transformations beyond the ones specified here are
considered as bad transformations and not included here.

After this step the user should click on Run registration which starts to compute the
transformations and stores them in a csv file. The progress bar in this step shows the
progress of the transformation. And while the transformations are being computed the user
gets dynamic feedback as shown below –

The above trajectory (yellow) in the reference image is being dynamically being drawn here.
As computing the transformations takes a lot of time, we cannot have user sitting idle.
Hence here we show some dynamic feedback to the user.

The above table is also being dynamically being updated. The green rows indicate a good
transformation, the yellow ones indicate an invalid transformation and the red ones indicate
the discarded transformations in the pre-processing step. This is to show the user some
feedback while the registration is running.

This chart is generated after the transformation is run. This shows the user a graphical
representation of the computed transformations (translations in x and y and rotations).
After this step the user can use the computed transformations and apply them to a specific
channel. So assume he / she computes the transformations on the red channel but wants to
apply them to a different channel he can do that in the alignment step shown below in the
figure:

WEEK 11,12 (AUGUST 10 – AUGUST 25)

In the last weeks we focused on finishing up the project and discussed about the poster
contents to be presented at the ImageJ Users and Developers Conference 2015 in Madison
in September. We made a few changes to the code and fixed some bugs in the code.
The following figures illustrate the basic overview of the plugin-

Conclusion

In this project we developed a plugin to compute the transformations from a stack of
images and then we used those transformations to align the stack of images. We get good
results on the 3 datasets that we tested. Further extension of the project would include
testing our plugin with more challenging datasets.
We presented our work at the following 2 places:

 poster at the imageJ Users and developers conference 2015 in Madison, Wisconsin,
USA during September 5-6, 2015

 plugin demo at the INCF Booth at Society for Neuroscience Conference 2015 in
Chicago, Illinois, USA on October 17-21, 2015.

