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In this project we aim to track a moving object taken from an image sequence. 

The object could be a book, a human, swimmer, skater, a vehicle or anything 

that can exhibit motion. Object Tracking has numerous applications in the field 

of Security and Surveillance, traffic monitoring, medical imaging, Human 

computer Interaction and many more.  

In this project we target at tracking objects in videos taken from a fixed camera 

and a moving camera. We track single objects and multiple objects in both 

cases. For multiple object tracking using moving camera, we propose a 

plausible solution to it too. We here propose an algorithm based on harris 

feature point, flow computation and cluster analysis. We track objects and 

then compare our results/implementation with a state of the art existing 

algorithms - Optical flow, Kalman filter, Mean shift or the KLT tracker.  
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1. AIM OF THE PROJECT 

In this project we aim to track a moving object in a video in real time. The object could be a book, a 

human, a vehicle or anything that can exhibit motion. Object Tracking has numerous applications in 

the field of Security and Surveillance, traffic monitoring, medical imaging, Human computer 

Interaction and many more.  

In this project we target at tracking objects in videos taken from a fixed camera. We here propose an 

algorithm similar to that proposed by Wong and Spetsakis 2003 [1]. We track objects and then 

compare our results/implementation with a state of the art existing algorithm from one among the 

following Optical flow, Kalman filter, Mean shift or the KLT tracker.  

In this project we aim to solve the following three cases: 

1. Tracking a single object from a stationary camera 

2. Tracking multiple objects from a stationary camera 

3. Tracking a single object when the camera exhibits motion 

A rough extension to case 3 is also proposed to track multiple objects from a moving camera. 

2. INTRODUCTION 

Object Tracking has been a subject of research for a very long time. Object Tracking can be done in 

various ways: 

¶ Feature Point Based Object Tracking – In such approaches feature points of the objects are 

extracted and these points are then tracked to track the object motion. The feature points 

from an object can be Corners as in the Harris Corner Detector [2], SIFT (Scale Invariant 

Feature Transform) by Lowe [3], SURF (Speeded Up Robust Features) points [4], HOG 

descriptors as in the famous paper by Dalal and Triggs[5] or any other valid features which 

can be tracked in consecutive frames from a video. 

¶ Template Matching based tracking – This kind of tracking generally involves tracking a 

specific object in a scene whose template is known apriori. Examples of such tracking may 

include tracking a specific object such as a soccer ball in a game of soccer, tracking a specific 

object (could be a book, a toy, a specific car or anything else that you can think of) in a 

scene. 

¶ Color Histogram Based tracking  

¶ Probabilistic / Markov Model Based Tracking  - This generally involves using the information 

from the previous frames and predicting the motion based on a probabilistic model. 

Algorithms like Kalman Filters and Particle Filters fall under this category. 

¶ Contour Based Tracking 

We here focus on Feature Point Based Object Tracking. We here aim to track objects in a video taken 

from a fixed stationary camera. For the simplicity of the project we initially focus on tracking a single 

object in a video or an image sequence. Later we propose an algorithm to extend this single object 

based tracking to track multiple objects in a video.  
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The latter part of the project focuses on tracking a single object from a camera which exhibits 

motion. We then extend this approach to track multiple objects from a moving camera. It should be 

noted the initial aim of this project was just to track a single object from a moving camera, however 

after implementing the former case, it seemed plausible to extend this approach to the multi object 

tracking too. 

3. ASSUMPTIONS 

Object Tracking can be done in numerous ways.  We here assume the following to track objects: 

¶ The moving objects should not occlude each other – In our proposed algorithm we assume 

that the objects being tracked do not occlude each other. In case of an occlusion between 2 

moving objects, our algorithm is not able to distinguish between the 2 tracked objects. 

¶ The object should have at least 3 corners – this is a very reasonable assumption as most 

objects have much more than three corners. 

¶ The object should not be moving very fast – this assumption also is very reasonable for the 

kind of image sequences we focus on. It is assumed that the motion does not suddenly 

change a lot. 

¶ It is assumed that the object does not undergo any deformation for tracking using a 

stationary camera. 

¶ The video is taken from a stationary camera – We also assume that the camera does not 

move while taking the video, we focus on tracking objects when the camera exhibits motion 

in the latter part of the project.   

¶ In the case of tracking of single object with a camera that exhibits motion, we assume that 

the object is not very close to the boundary of the image/frame and that the object remains 

in the seen. 

¶ In our last case we also assume that the foreground object being tracked moves faster than 

the background. We additionally assume that the object moves at a different speed than the 

background. 

¶ The foreground and background have corners. 

 

4. OUR PROPOSED ALGORITHM 

We here divide the object tracking problem into tracking image sequences captured using a 

stationary camera and a camera that exhibits motion. For each case we aim to target single object 

tracking and multiple object tracking. We present the approaches for the 4 cases to track objects 

below: 

 

4.1 SINGLE OBJECT TRACKING 

We here propose an algorithm wherein we follow the steps: 

1. Input the Image sequence / video 

2. We then do a background subtraction  

3. Detect the corners 

4. Match the Detected corners in the next frame 

5. Draw a convex hull around the detected corners 
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6. Repeat the above steps for all frames to compute the tracking and segmentation of the 

object 

Input the Image Sequence / Video 

The image sequences and the video being used in this project has been taken from the link – 

cmp.felk.cvut.cz/~vojirtom/dataset and the existing videos in matlab. 

We track use the  

 

Background Subtraction 

We take 3 frames frame (i+1), frame I, frame (i-1), We then compute the difference of the (i+1)th 

frame and the ith frame. 

 

 

 

 

 

 

We compute the difference  

Ὀȟ  ὪὶὥάὩ Ὥ ὪὶὥάὩ Ὥ ρ, 

Ὀ ȟ ὪὶὥάὩ Ὥ ρ ὪὶὥάὩ Ὥ 

After Doing Background subtraction we get rid of the background and only the moving objects are 

retained. 

 

Corner Detection 

We here use the famous Harris Corner Detector to detect the corners in the frames. The detected 

corner then act as the feature points which we track in the consecutive frames to track the objects. 

Here we compute the feature points using an approach similar to Shi-Tomasi / Harris Corner 

Detector. We compute the matrix, M for each pixel and threshold its minimum Eigen value to 

compute the corner points. We define the matrix M as:  

  

ὓ  
Ὅ Ὣz Ὅ Ὣz

Ὅ Ὣz Ὅ Ὣz
 

Here the Gaussian filter Ὣ  Ὡ   and Ὅ ὍȢὍ ȟ   Ὅ ὍȢὍ ὥὲὨ Ὅ ὍȢὍ and Ὅ, Ὅ 

are the gradients of the image in x and y directions respectively which have been obtained by 

convolving the images with the following filters: 

Ὠὼ 
ρ π ρ
ρ π ρ
ρ π ρ

    ὥὲὨ  Ὠώ  
ρ ρ ρ
π π π
ρ ρ ρ

 

We then apply non maximal suppression to detect the local maximas to reduce the number of 

feature/corner points. These corner points serve as the candidate points to be chosen as the feature 

points in our algorithm. 

Matching the Detected Corners in the next frame 
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After background subtraction we do corner detection to get corners in the images Ὀȟ ὥὲὨ Ὀ ȟ. 

We use the one of the following ways to match the corners.  

Method1 ς Based on SSD and convex hull 

1. Detect corners in the image Ὀȟ  – it should be noted that the corners will only appear in 

the moving objects because after background subtraction algorithm the background would 

be eliminated and only the foreground which is the moving objects in this context remains 

2. Compute the convex hull using the corner points of the image Ὀȟ  , this has a different 

approach in case of multiple object tracking. 

3. After computing the convex hull, match the points on the convex hull to find their 

corresponding points using a simple sum of squared differences method. 

4. After getting the matched points in the next frame, plot the convex hull again to get the 

object in the next frame. Here we only match the objects on the hull. 

5. Repeat the above steps for all the frames to track the object in the video. 

 

Method 2 ς Based on Corner matching based on Euclidean distance 

1. Detect Corners in the images Ὀȟ ὥὲὨ Ὀ ȟ – again corners only appear in the moving 

objects due to background subtraction. 

2. Compute the convex hull of the image Ὀȟ . For each point that lies on this hull, find its 

corresponding point/corner from the corners detected in the image Ὀ ȟ based on the 

minimum Euclidean distance. So a point on the hull ὴwill have a matching point ὴ such 

that: 

ὴ ὴὪέὶ ύὬὭὧὬ ὸὬὩὨὭίὸὥὲὧὩ ὴ ὴ  Ὥί ὰὩὥίὸȠ  ὴ ‭ ὧέὶὲὩὶί ὨὩὸὩὧὸὩὨ Ὥὲ Ὀ ȟ 

3. Repeat step 2 to find all feature points / corners in the image Ὀ ȟȢ  

4. After finding the corresponding points compute the convex hull of these points and that will 

be the next position of the object in the next frame. 

5. Repeat the above steps for all the frames to track the object in the image sequence / video 

 

 

 

Convex Hull Generation 

We compute the convex hull by using the matlab function convhull. A convex hull is a boundary over 

a set of points which covers each point. 

 
Figure1: A convex hull over a set of points 
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4.2 MULTIPLE OBJECT TRACKING 

 

We here extend our algorithm to track multiple objects in a scene. Currently the multiple object 

tracking code is not complete so only a part of it has been implemented. To track multiple objects 

we use a similar algorithm as we used for tracking a single object. Here it should be noted that our 

algorithm can not handle occlusion very well. And as of now to track multiple object one must know 

the number of objects in the scene apriori. We use the following steps to track multiple objects: 

 

1. Input the Image sequence / video 

2. Do background subtraction  

3. Detect the corners 

4. Use K means clustering to cluster the detected corners into k clusters. 

5. For each cluster - match the Detected corners in the next frame 

6. For each cluster - Draw a convex hull around the detected corners 

7. Repeat the above steps for all frames to compute the tracking and segmentation of the 

object 

Input the ImageSequence / Video 

Here we use the videos that come with the matlab software – ‘atrium.aviΩ and ‘visiontraffic.aviΩΦ In 

each of these videos we have multiple objects moving. We attempt to track them using our 

proposed algorithm. It is not finished as of now. 

 

Background Subtraction 

This step remains the same as that for tracking single object 

 

Detect the corners 

This step also remains the same as that for tracking a single object 

 

K means clustering the detected corners into k clusters 

After detecting corners in the image we use K means clustering to cluster the detected corners into k 

clusters. Each of the detected objects will have corners and all corners of a specific object will be 

close to itself and hence after K means clustering, we will get K clusters corresponding to the K 

objects in the scene. 

 

Matching /Tracking Feature Points 

For each of the clusters we match / track the feature points in the same way as we did for the single 

object tracking, treating each cluster corresponding to one object. 

 

Convex Hull Generation  

We follow the convex hull generation for each cluster in the same way as we did for single object 

tracking. 

 

4.3 TRACKING A SINGLE OBJECT FROM A MOVING CAMERA 

In this section we solve the problem wherein we track a single object from an image sequence taken 

from a camera which exhibits some motion. We solve this problem by computing the flow between 
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2 frames and using clustering to cluster the flow to separate out the foreground moving object and 

the background into 2 clusters.  

We propose the following algorithm to track the object in a moving background: 

1. Extract the feature points 

2. Match / track the feature points 

3. Compute the flow using the feature points 

4. Generate a feature vector for each point 

5. Clustering the features 

6. Find out the cluster corresponding to the foreground object 

7. Track the foreground cluster 

8. Fit a convex hull on the cluster to segment out the object 

 

Extract the Feature Points and compute the Flow 

The feature points are extracted in a very similar way as were extracted for the previous 2 cases as in 

section 4.1 and 4.2. The difference here is that we do not do background subtraction here. We 

detect the harris corner points in the the ith frame. We call these points as the feature points. 

 

Match / Track the Feature Points, Compute the Flow and Generate the features 

We use the feature points computed in the previous section from frame I to match it to the 

corresponding feature points in frame (i+1). We match the points on a simple Sum of Squared 

difference (SSD) error measure. We search a window of size ςύ ρᶻςύ ρ and compute SSDs 

over the patch of size ὴ. The central pixel of the patch corresponding to the least SSDs is the 

matched feature point. So say the point ὖ in frame Ὥ maps to the point ὖ in frame Ὥ ρ. We 

compute the flow of the point P as: 

όᴆ ὖὼȟώ  ὖ  ὼᴂȟώᴂ 

Where όᴆ is the flow vector and ὼȟώᴂ is the corresponding point in frame Ὥ ρ. 

We then use generate the vector 

ὠ  
όᴆ
ὖ

 

So this vector is actually the matrix, S as below: 

Ὓ  

ό
ὺ
ὖ ὼ
ὖ ώ

 

 

Clustering the Features 

From the previous section, we compute the matrix Ὓ for each of the detected feature points ὖ. For 

each point we call this matrix Ὓ as the feature vector. We do this for all the detected feature points 

to come up with features Ὓ ȟὛȟὛ ȣȣὛ  where n is the number of feature points. We then use a 

simple cluster analysis to cluster these features into 2 clusters. We use simple K-means based on the 

Euclidean distance measure/kernel for clustering the features. The 2 clusters correspond to the 

background and the foreground. 

 

Find out the cluster corresponding to the foreground 

After clustering the features into 2 clusters, each point belongs to either a foreground cluster (object 

to be tracked) or the background cluster (due to camera motion). We now need to find out the 
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cluster corresponding to the foreground, we do so by computing the average flow of each cluster. 

We compute the average flow magnitude over all points in each cluster. 

Ὂὰέύρ   ό  ὺ

   

 

Ὂὰέύς   ό  ὺ

   

 

 

Where όis the flow in x direction of the feature point i between frame Ὥ and Ὥ ρ. We label the 

foreground cluster as the one which has more flow than the other. If Ὢὰέύ ρ Ὢὰέύ ς, we say 

cluster 1 corresponds to the foreground else cluster 2 corresponds to the foreground. 

 

Track the clusters 

So assume we have k clusters detected in frame i and k clusters in frame i+1, we map each of the 

clusters in frame I to the corresponding cluster in frame i+1. It should be noted that this could be 

made simpler by just considering 2 clusters, however generalizing it for k clusters makes it easy to 

extend this approach to track not only single objects but also multiple objects from a moving 

camera. For mapping each cluster to its corresponding cluster, we map the centroids of the clusters 

in frame I to those in frame i+1. We compute the distance between each of the cluster centroids in 

frame i and frame i+1. 

 

Fit a convex hull  

Here we fit a convex hull to roughly segment out the part in the image corresponding to the object 

being tracked. We use the convex hull for the points corresponding to the foreground cluster. We 

use this in exactly the same way as was used in section 4.2 

 

4.4 Tracking multiple objects from a moving camera 

 

Here we extend the approach presented in section 4.4 to track multiple objects from a moving came. 

We take as input from the user the number of objects in the image sequence as apriori. We then 

simply set the number of clusters as the number of objects + 1 for the background. It should be 

noted that this is based on the assumption that the foreground objects do not occlude each other or 

are in very close proximity with each other and that the flow of the background is different from the 

foreground objects. 
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5 OUR RESULTS SO FAR 

To show the validation and appropriateness of our proposed algorithm we present our 

results in this section. We first present results obtained for cases corresponding to the 

image sequence taken from a stationary camera, later we show the same for the moving 

camera case.  

Single Object Tracking using a fixed camera 

 

        
Figure2: Image generated after background subtraction (left); corners/feature points detected in the 

resulting image 

 

     
Figure 3: Convex Hull used to segment out the tracked object using method 1 and 2 as descrbed in 

the previous section 

 



 
 

9 
 

   
Figure4: Image (electric board) generated after background subtraction (left); corners/feature points 

detected in the resulting image 

 

    
Figure5: Convex Hull used to segment out the tracked object using method 1 and 2 as descrbed in 

the previous section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

10 
 

Multiple Object Tracking using a fixed camera 

 
Figure 6: Image after background subtraction 

 
Figure 7: Corner Detector and Clustering of corners in the Background subtracted image 

 
Figure 8: Multiple Object 
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Single Object tracking using a moving camera 

 

 
Figure 9: Tracking a couple skiing 

 

 
Figure 10: Tracking a swimmer diving 
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Figure 11: Tracking a skater 
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Figure12: Tracking another skater ‘Asada’ 

 

6. COMPARISON TO A STATE OF THE ART ALGORITHM FOR TRACKING 

After implementing the proposed algorithm, our tracking results would be compared with an already 

existing algorithm (one of these KLT tracker, Optical Flow or Mean shift). We here compare our 

results with an existing tracking algorithm. Here we present the results by using code taken from the 

internet and the inbuilt code in matlab which uses a Kalman Filter to track multiple objects in a 

video. We show below the people being tracked using a Kalman filter and the optical flow of the 

image. At a later part of the project the KLT Tracker would used to compare the results to get 

distinct boundaries to segment and track the object. 

Using Fixed Camera 

    

Figure 9: Binary image segmenting out the tracked objects using a Kalman Filter 
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Figure 10: Kalman Filter being used to track multiple objects in a video 

 

Figure 11: Optical flow computed between 2 frames 
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Using moving camera 

 

Figure 12: Lucas Kanade Tracker using optical flow to track skaters image sequence from a moving 

camera 

 

Figure 13: Optical flow of the swimmer clearly segments out the swimmer 

 

 

7. CONCLUSION SO FAR 

We have presented in this report single object tracking and multiple object tracking using a fixed 

camera and a camera that exhibits motion. We also propose an algorithm to extend the single object 

tracking to multiple object tracking using moving camera. The code for both the single object and 

multiple object tracking case has been presented in the Appendix 
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APPENDIX 

Tracking_objects.m  

 

tic  
srcFiles = 

dir( '/home/sahdev/Desktop/Fall2015/ComputerVision5323/project_ideas/Trackin

gDataset/PROST/box/*.jpg' );  % the folder in which ur images exists  
n = length(srcFiles);  
labels = cell(n,1);  

  
parfor  i = 1 : n  
    filename = 

strcat( '/home/sahdev/Desktop/Fall2015/ComputerVision5323/project_ideas/Trac

kingDataset/PROST/box/' ,srcFiles(i).name);  
    labels{i} = cellstr(filename);  
end  
toc  
I = imread(char(labels{1}));  
sz = size(I);  
sz_x = sz(1,1);  
sz_y = sz(1,2);  

  
frames = uint8(zeros(sz_x,sz_y,n));  
parfor  i=1:n  
    frame_i = imread(char(labels{i}));  
    frame_i = rgb2gray(frame_i);  
    frames(:,:,i) = frame_i;  

     
end  
toc  

  
%% 
strt2 = 2;  
end2 = 10  
for  i=strt2:end2  
    temp1 = frames(:,:, i) -  frames(:,:,i - 1);  
    temp1_i = frames(:,:,i);  
    temp2_i = frames(:,:,i+1);  

     
%     pts = detectHarrisFeatures(temp1);  
    pts = getCorners(temp1);  
    y = floor(pts(:,1));  % this is y  
    x = floor(pts(:,2));  % this is x  
    n2 = numel(x);  
    Features1 = zeros(n2,2);  
    Features1(:,1) = y;  
    Features1(:,2) = x;  

     
    temp2 = frames(:,:,i+1) -  frames(:,:,i);  
%     pts2 = detectHarrisFeatures(temp2);  
    pts2 = getCorners(temp2);  
    y2 = floor(pts2(:,1));  % this is y  
    x2 = floor(pts2(: ,2));  % this is x  
    n3 = numel(x2);  
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    Features2 = zeros(n3,2);  
    Features2(:,1) = y2;  
    Features2(:,2) = x2;   

     
%     figure, imshow(frames(:,:,i)), hold on, 

plot(y,x,'+','Color','yellow'),hold off     
       % sample feature points randomly t o track them  
    if  i == strt2  
        P = datasample(Features1,1);  

         
    end  
    %% feature matching based on computing minimum euclidean distance 

between the detected feaure points  
%     distances = pdist2(P,Features2);     
%     [dist, matched_in dex] = min(distances);     
%     target_point = Features2(matched_index,:);  
%     P = target_point;  

     
    %% build a convex hull from the features detected in the first 2 frames 

i and (i - 1)  
    k = convhull(Features1(:,1),Features1(:,2));  
    bounds = z eros(numel(k),2);  
    for  j=1:numel(k)  
        bounds(j,1) = Features1(k(j),1);  
        bounds(j,2) = Features1(k(j),2);  
    end  

     
    %% feature matching based on computing minimum euclidean distance 

between the detected feaure points  
    matched_point s = zeros(0,2);  
    % following for loops matches each of the points on the convex hull  
    % generated from frames i and (i - 1) and matched it to the feature  
    % points generated from frames (i+1) and i, so after execution of this  
    % loop we have poin ts matched in from frames i,(i - 1) to that of frames  
    % (i+1),i;; here we use this approach and not the SSD method to match  
    % the corners as the SSD Method would be computationally expensive  
    for  j=1:numel(k)  
        P_temp = [bounds(j,1) bounds(j ,2)];  

         
        distances = pdist2(P_temp,Features2);  
        [dist, matched_index] = min(distances);     
        temp_target_point = Features2(matched_index,:);  

     
        matched_points(j,:) = temp_target_point;  
    end  

     

     
    %% feature matching based on SSD measure  
    % here we use another method to match the corners based on SSD we do  
    % not detect the corners a second time in this approach, we dont use  
    % Features2 here  
    P_t1 = getCorners(temp1);  
%     P_t2 = getCorners(temp2 );  
    for  j=1:numel(P_t1)/2  
        P_Matched(j,:) = matchCorners(temp1_i,temp2_i,P_t1(j,:));        
    end  

     
    k2 = convhull(P_Matched(:,1),P_Matched(:,2));  
    bounds2 = zeros(numel(k2),2);  
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    for  j=1:numel(k2)  
        bounds2(j,1) = P_Matched(k2 (j),1);  
        bounds2(j,2) = P_Matched(k2(j),2);  
    end  
    figure, imshow(frames(:,:,i+1)), hold on, plot(y,x, '+' , 'Color' , 'red' ), 

plot(bounds2(:,2),bounds2(:,1), 'Color' , 'cyan' ),hold off  

         
    figure, imshow(frames(:,:,i+1)), hold on, 

plot(y2,x2, '+' , 'Color' , 'yellow' ), 

plot(matched_points(:,1),matched_points(:,2), 'Color' , 'red' ),hold off  

     

     
%     figure, imshow(frames(:,:,i+1)), hold on, 

plot(target_point(1,1),target_point(1,2),'+','Color','red'),hold off  
%     figure, imshow(temp2);% hold on , plot(y,x,'+','Color','yellow'),hold 

off     
%      

     
end  
matchCorners .m 

 

function  P = matchCorners(I,I2,Point_p)  

sz = size(I);  
    size_x = sz(1,1);  
    size_y = sz(1,2);  
    w=2;  
    p=3;  
    x2 = 0;  
    y2 = 0;  
    SSD = 0;  
    for  i= - w:w 
        fo r  j= - w:w 
            ssd = 0;  
            temp1 = Point_p(1,2); % gets the x coordinate  
            temp2 = Point_p(1,1); % gets the y coordinate  
            px_corr = 15;  

% handling points lying close to the border of the image  

if (temp1 <=px_corr || temp2 <=px_corr || temp1>=size_x - px_corr 

|| temp2>=size_y - px_corr)  
                SSD(i+w+1,j+w+1) = 9999;  
                break  
            end             mask1 = I(temp1 - p:temp1+p,temp2 - p:temp2+p);  
            mask2 = I2(temp1 - p+i:temp1+p+i,temp2 - p+j:temp2+p+ j);  
            dif_mask = mask2 - mask1;  
            dif_mask = dif_mask.^2;  
            SSD(i+w+1,j+w+1) = sum(sum(dif_mask));  
        end  
    end  
    [t1 it1] = min(SSD);  
    [t2 it2] = min(t1);  
    [t3 it3] = min(SSD,[],2);  
    [t4 it4] = min(t3);  
    x2  = Point_p(1,2) + it4 - (w+1);  
    y2 = Point_p(1,1) + it2 - (w+1);  

  
%     figure, imshow(I);  
%     imshow(I2),hold on, plot(y2,x2,'+','Color','red'),hold off  
    P = [x2 y2];  
end  
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getCorners .m 

function  P = getCorners(I)  
    size_xy = size(I);  
    size_x = size_xy(1,1);  
    size_y = size_xy(1,2);  
    % I = imresize(I,[resize_x resize_y]);  

  

  
    %% create a filter to compute the gradient of the image in x and y 

direction  
    dx = [ - 1 0 1 ; - 1 0 1 ; - 1 0 1];  
    dy = [ - 1 - 1 - 1 ; 0 0 0 ; 1 1 1];  
    Ix = conv 2(I,dx, 'same' );  
    Iy = conv2(I,dy, 'same' );  

  

  
    %% create the gaussian filter  
    hsize = 3;  
    sigma = 0.5;  
    gauss = fspecial( 'gaussian' , hsize, sigma);  

  

  
    %% convolving the square of the first derivative with the gaussian  
    Ix2 = conv2(Ix .^2, gauss, 'same' );  
    Iy2 = conv2(Iy.^2, gauss, 'same' );  
    Ixy = conv2(Ix.*Iy, gauss, 'same' );  

  

  
    %% computing Harris Features  

    
    det_M = Ix2.*Iy2 -  Ixy.^2;  
    trace_M = (Ix2 + Iy2);  
    R = det_M ./trace_M;  

  

  
    % citation Brown, Szeliski,  andWinder (2005) paper use the harmonic 

mean: source Richard Szeliski book chapter 4  
    %% do non maximal supression on R and store the computed coordinates as 

the corners  
    hsize = 3;  
    threshold = 2000;  
    Filtered = ordfilt2(R,hsize^2,ones(hsize) ); % dilate to retain the 

local maxima  
    R = R>threshold & (R==Filtered) ;  
    % something really cool happens here we check if after dilation the 

values are equal to  
    %the original values and only retain the values which are equal, this 

retains the l ocal maxima  
    [x,y] = find(R);  
%     figure,imshow(I), hold on, plot(y,x,'+');  
    hold off  
    P = [y x];  
end  

 

MultipleObjectTracking.m   

tic  
video = VideoReader( 'atrium.avi' );  
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% video = VideoReader('visiontraffic.avi');  
nFrames = video.NumberOfFrames;  
vidHeight = video.Height;  
vidWidth = video.Width;  

  
mov(1:nFrames) = struct( 'cdata' , zeros(vidHeight,vidWidth, 3, 

'uint8' ), 'colormap' ,[]);  
parfor  k = 1 : nFrames  
    mov(k).cdata = read(video,k);  
    mov(k).cdata = rgb2gray(mov(k).cdata);  
end  
toc  

  
temp2 =3 ;  
%%  
P1=6;  
strt2 = 400;  
end_it = 402;  
occlusion_threshold = 90;  
moving_objects = 3;  
for  i=strt2:end_it  
    temp1 = mov(i).cdata -  mov(i - 1).cdata;  

     

     
    %% FEATURE 1 using (i) and (i - 1)  
    pts = detectHarrisFeatures(temp1);  
    y = floor(pts.Locat ion(:,1));  % this is y  
    x = floor(pts.Location(:,2));  % this is x  
    n = numel(x);  
    Features1 = zeros(n,2);  
    Features1(:,1) = y;  
    Features1(:,2) = x;  

     
    %% FEATURE 1 using (i+1) and (i)  
    temp2 = mov(i+1).cdata -  mov(i).cdata;  
    pt s2 = detectHarrisFeatures(temp2);  
    y2 = floor(pts2.Location(:,1));  % this is y  
    x2 = floor(pts2.Location(:,2));  % this is x  
    n2 = numel(x2);  
    Features2 = zeros(n2,2);  
    Features2(:,1) = y2;  
    Features2(:,2) = x2;       

     
    %% do clus tering to track individual objects     
     if  i == strt2  
        [idx,Centroid] = kmeans(Features1,moving_objects);  
        cnt=1;     
    %     Group1,Group2,Group3,g1,g2,g3  
        g1=1;g2=1;g3=1;  
        Group1 =zeros(0,2);  
        Group2 =zeros(0,2);  
        Group3 =zeros(0,2);  

         
        for  j=1:numel(Features1)/2  
            if (idx(j,1) == 1)  
                Group1(g1,1) = Features1(j,1);  
                Group1(g1,2) = Features1(j,2);  
                g1 = g1+1;  
            elseif (idx(j,1) == 2)  
                Group2(g2,1) = Features1(j,1);  
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                Group2(g2,2) = Features1(j,2);  
                g2 = g2+1;  
            elseif (idx(j,1) == 3)  
                Group3(g3,1) = Features1(j,1);  
                Group3(g3,2) = Features1(j,2);  
                g3 = g3+1;  
            end  
        end  
     end  
%    figure, imshow(mov(i).cdata), hold on, 

plot(y,x,'+','Color','yellow'),hold off   

    

    
    %% tracking clusters      
       % sample feature points randomly to track them  
    if  i == strt2  
        while (1)  
            P1 = datasample(Group1(:,:),1);  
            if  (P1(1,1) ==0 && P1(1,2) ==0)  
                continue ;  
            else  
                break ;  

         
            end  
        end  
        while (1)  
            P2 = datasample(Group 2(:,:),1);  
            if  (P2(1,1) ==0 && P2(1,2) ==0)  
                continue ;  
            else  
                break ;  

         
            end  
        end  
        while (1)  
            P3 = datasample(Group3(:,:),1);  
            if  (P3(1,1) ==0 && P3(1,2 ) ==0)  
                continue ;  
            else  
                break ;  

         
            end  
        end       
    end  
    % till here we have 3 sampled points from each of the 3 clusters  
    distances = pdist2(P1,Features2);     
    [dist, matched_ind ex] = min(distances);     
    target_point1 = Features2(matched_index,:);  
    P1 = target_point1;  

     
    distances = pdist2(P2,Features2);     
    [dist, matched_index] = min(distances);     
    target_point2 = Features2(matched_index,:);  
    P2 = target _point2;  

     
    distances = pdist2(P3,Features2);     
    [dist, matched_index] = min(distances);     
    target_point3 = Features2(matched_index,:);  
    P3 = target_point3;  
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    if (i == strt2)  

     
        k1 = findCluster(target_point1,Centroid);  
        k2 = findCluster(target_point2,Centroid);  
        k3 = findCluster(target_point3,Centroid);  

     
    end  
%     figure, imshow(mov(i+1).cdata), hold on, 

plot(target_point1(1,1),target_point1(1,2),'+','Color','red'),hold off  
%     figure, imshow(mov(i +1).cdata), hold on, 

plot(target_point2(1,1),target_point2(1,2),'+','Color','yellow'),hold off  
%     figure, imshow(mov(i+1).cdata), hold on, 

plot(target_point3(1,1),target_point3(1,2),'+','Color','cyan'),hold off  

     

     

      
%     colors2(k11) =   

     
    %% cluster 1  

     
    kover = convhull(Group1(:,1),Group1(:,2));  
    bounds1 = zeros(numel(kover),2);  
    for  j=1:numel(kover)  
        bounds1(j,1) = Group1(kover(j),1);  
        bounds1(j,2) = Group1(kover(j),2);  
    end  
    figure, imshow(mov(i+1). cdata), hold on, 

plot(bounds1(:,1),bounds1(:,2), 'Color' , 'red' ),hold off  

    
    %% cluster 2  
    kover = convhull(Group2(:,1),Group2(:,2));  
    bounds2 = zeros(numel(kover),2);  
    for  j=1:numel(kover)  
        bounds2(j,1) = Group2(kover(j),1);  
        bounds2(j,2) = Group2(kover(j),2);  
    end  
    figure, imshow(mov(i+1).cdata), hold on, 

plot(bounds2(:,1),bounds2(:,2), 'Color' , 'cyan' ),hold off  

    
    %% cluster 3  
    kover = convhull(Group3(:,1),Group3(:,2));  
    bounds3 = zeros(numel(kover),2);  
    for  j =1:numel(kover)  
        bounds3(j,1) = Group3(kover(j),1);  
        bounds3(j,2) = Group3(kover(j),2);  
    end  
    figure, imshow(mov(i+1).cdata), hold on, 

plot(bounds3(:,1),bounds3(:,2), 'Color' , 'yellow' ),hold off      
end  
toc  

 

trackingCamera_motion.m  

tic  

  
max_pixel_flow = 4; % this is w, this means actually a movement of 

2*max_pixel_flow +1 for the object to be tracked;  
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patch_match_size = 3; % this is p, the size of the patch would be 

patch_match_size x patch_match_size  
boundary_effect = 15;  
threshold = 18 00; % this is the threshold for the harris corner detector  

  
srcFiles = dir( 'C: \ Users \ Raghavender Sahdev \ Desktop \ York 

University \ Computer Vision 5323 \ project \ vision \ skatings2 \ skating2 \ *.jpg' );  

% the folder in which ur images exists  
n = length(srcFiles);  
l abels = cell(n,1);  

  
parfor  i = 1 : n  
    filename = strcat( 'C: \ Users \ Raghavender Sahdev \ Desktop \ York 

University \ Computer Vision 

5323 \ project \ vision \ skatings2 \ skating2 \ ' ,srcFiles(i).name);  
    labels{i} = cellstr(filename);  
end  
toc  
I = imread(char(labels{1 }));  
sz = size(I);  
sz_x = sz(1,1);  
sz_y = sz(1,2);  

  
boundary_effect = floor(sz_x/30);  
frames = uint8(zeros(sz_x,sz_y,n));  
parfor  i=1:n  
    frame_i = imread(char(labels{i}));  
    t_s = size(frame_i,3);  
    if (t_s == 3)  
        frame_i = rgb2gray(frame_i);  
    end  
    frames(:,:,i) = frame_i;  

     
end  
toc  

  
%% set the frame sequence numbers to track  
strt2 = 45;  
end2 = 60;  
% set the number of clusters to track multiple objects set this number to  
% the total number of obhects in the scene -  1.  
clusters = 2;  

  
Centroid = zeros(2,clusters);  
temp_pts = zeros(1,2);  
for  i=strt2:end2  
    temp1 = frames(:,:,i);  
    temp2 = frames(:,:,i+1);  

     
    if  i==strt2       
        pts = getFeatures(temp1,threshold);  
%         temp_pts = pts;  
        znt=1;  
        for  j=1:nu mel(pts)/2  
            if (pts(j,1) < boundary_effect || pts(j,1) > (sz_x -

boundary_effect))  
                ;  
            elseif  (pts(j,2) < boundary_effect || pts(j,2) > (sz_y -

boundary_effect))  
                ;  
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            else  
                temp_pts(zn t,1) = pts(j,1);  
                temp_pts(znt,2) = pts(j,2);  
                znt = znt + 1;  
            end  
        end  
    end  

     
    n_corners = numel(temp_pts)/2;  
    matched_Points = zeros(n_corners,2);  
    for  j=1:n_corners         
        matched_P oints(j,:) = 

matchFeatures(temp1,temp2,temp_pts(j,:),max_pixel_flow,patch_match_size,bou

ndary_effect);  
    end  

     
    flow_compute = matched_Points -  temp_pts;  

     
    %% logic for the actual corner updates  
    temp2_pts = matched_Points;  
    temp_corne rs = getFeatures(temp2,threshold);  

     
    actual_index=1;  

     
    actual_corners = zeros(1,2);  
    znt2=1;  
    for  j=1:numel(temp_corners)/2  
        if (temp_corners(j,1) < boundary_effect || temp_corners(j,1) > 

(sz_x - boundary_effect))  
            ;  
        elseif  (temp_corners(j,2) < boundary_effect || temp_corners(j,2) > 

(sz_y - boundary_effect))  
            ;  
        else  
            actual_corners(znt2,1) = temp_corners(j,1);  
            actual_corners(znt2,2) = temp_corners(j,2);  
            znt2 = znt 2 + 1;  
        end  
    end  

     
    %% this part tracks based on corner matching  
    n_corners2 = numel(actual_corners)/2;  
%     for j=1:n_corners  
%         min=100;  
%         for k=1:n_corners2  
%             dist = (temp2_pts(j,1) - actual_corners(k,1))^2 +  

(temp2_pts(j,1) - actual_corners(k,2))^2;  
%             if(dist < min)  
%                 actual_index = k;  
%             end  
%         end  
%         matched_Points(j,1) = actual_corners(actual_index,1);  
%         matched_Points(j,2) = actual_corners(actual_ index,2);  
%     end    

     
    %% cluster analysis begins  
    temp_pts = matched_Points;  
    mag = flow_compute(:,1).^2 + flow_compute(:,2).^2;  

     
    flow2 = [flow_compute, matched_Points];  
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     if (i == strt2)  
        [idx,Centroid] = kmeans(flow2 ,clusters);  
     end  

      
     [idx2,Centroid2] = kmeans(flow2,clusters);  
     temp_Centroid2 = Centroid2;  
     temp_idx2 = idx2;  

      
     % following code maps clusters to their respective initial clusters  
     % this part basically tracks the clusters  

      
     for  j=1:clusters  
         min=9999;  
         for  k=1:clusters  
             dist = (Centroid(j,3) - Centroid2(k,3))^2 + (Centroid(j,4) -

Centroid2(k,4))^2 ;  
             k;  
             if (dist < min)  
                 min = dist;  
                 C_k = k;  
             end  
         end  

          
         j;  
         C_k;  
%           disp('NEXT')  
         for  k_c=1:n_corners  
             if (idx2(k_c) == C_k)  
                 temp_idx2(k_c) = j;  
             end  
         end  
     end  

      
    cnt=1;bnt =1;ant=1;ent =1; fnt=1;gnt=1;hnt=1;  

     
    Features1 = zeros(1,2);  
    Features2 = zeros(1,2);  
    Features3 = zeros(1,2);  
    Features4 = zeros(1,2);  
    Features5 = zeros(1,2);  
    Features6 = zeros(1,2);  

     
    cluster1 = 0;  
    cluster2 = 0;  
   for  j=1:n_corners  
        if (temp_idx2(j) == 1)  
            Features1(cnt,:) = matched_Points(j,:);  
            cnt = cnt+1;  
            cluster1 = cluster1 + (matched_Points(j,1) - temp_pts(j,1))^2 + 

(matched_Points(j,2) - temp_pts(j,2))^2;  
        elseif (temp_idx2(j) == 2)  
            Features2(bnt,:) = matched_Points(j,:);  
            bnt = bnt+1;  
            cluster2= cluster2 + (matched_Points(j,1) - temp_pts(j,1))^2 + 

(matched_Points(j,2) - temp_pts(j,2))^2;  
        elseif (temp_idx2(j) == 3)  
            Features3(ant,:) = matched_Points(j,:);  
            ant = ant+1;  
        elseif (temp_idx2(j) == 4)  
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            Features4(ent,:) = matched_Points(j,:);  
            ent = ent+1;  
        elseif (temp_idx2(j) == 5)  
            Features5(fnt,:) = matched_Points(j ,:);  
            fnt = fnt+1;  
        elseif (temp_idx2(j) == 6)  
            Features6(ent,:) = matched_Points(j,:);  
            gnt = gnt+1;  
        end  

         
    end  
    cluster1=cluster1/cnt;  
    cluster2=cluster2/bnt;   

     
    %% plotting the conve x hull  
    bounds=zeros(1,2);  
    bounds2=zeros(1,2);     
    if  (strt2 == i)  
        if (cluster1 > cluster2)  
            flag=1;  
        else  
            flag=0;  
        end  
    end      
    if (flag == 1)  
        if (size(Features1,1)>2)   
            k1 = convhull(Features1(:,1),Features1(:,2));  
            bounds = zeros(numel(k1),2);  
            for  j2=1:numel(k1)  
                bounds(j2,1) = Features1(k1(j2),1);  
                bounds(j2,2) = Features1(k1(j2),2);  
            end   
        end  
    else  
        if (size(Features2,1)>2)  
             k2 = convhull(Features2(:,1),Features2(:,2));  
            bounds = zeros(numel(k2),2);  
            for  j2=1:numel(k2)  
                bounds2(j2,1) = Features2(k2(j2),1);  
                bounds2(j2,2) = Features2 (k2(j2),2);  
            end   
        end  
    end    
    figure, imshow(temp1), hold on,  
    plot(bounds(:,1),bounds(:,2), 'Color' , 'cyan' )  
    plot(bounds2(:,1),bounds2(:,2), 'Color' , 'cyan' )     
    plot(Features1(:,1),Features1(:,2), '+' , 'Color' , 'yellow' ),  
    plot(Features2(:,1),Features2(:,2), '+' , 'Color' , 'red' ),     
%     plot(actual_corners(:,1),actual_corners(:,2),'+','Color','cyan'),      
    plot(Features3(:,1),Features3(:,2), '+' , 'Color' , 'blue' ),  
    plot(Features4(:,1),Features4(:,2), '+' , 'Color' , 'green' ) ,  
    plot(Features5(:,1),Features5(:,2), '+' , 'Color' , 'cyan' ),  
    plot(Features6(:,1),Features6(:,2), '+' , 'Color' , 'white' ),  
    hold off ;  
end  
toc  
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LucasKanadeTracker.m  

 
%% input the 2 frames on which you want to compute the flow  
fr1 = frames(:,:,9);  
f r2 = frames(:,:,10);  
figure();  
subplot 211  
imshow(fr1);  
im1t = im2double((fr1));  
im1 = imresize(im1t, 0.5); % downsize to half  
subplot 212  
imshow(fr2);  
im2t = im2double((fr2));  
im2 = imresize(im2t, 0.5); % downsize to half  
%% Implementing Lucas Kanade M ethod  
ww = 11;  
w = round(ww/2);  
% Lucas Kanade Here  
% for each point, calculate I_x, I_y, I_t  
Ix_m = conv2(im1,[ - 1 1; - 1 1], 'valid' ); % partial on x  
Iy_m = conv2(im1, [ - 1 - 1; 1 1], 'valid' ); % partial on y  
It_m = conv2(im1, ones(2), 'valid' ) + conv2(im2,  - ones(2), 'valid' ); % 

partial on t  
u = zeros(size(im1));  
v = zeros(size(im2));  
% within window ww * ww  
for  i = w+1:size(Ix_m,1) - w 
   for  j = w+1:size(Ix_m,2) - w 
      Ix = Ix_m(i - w:i+w, j - w:j+w);  
      Iy = Iy_m(i - w:i+w, j - w:j+w);  
      It = It_m(i - w:i+w,  j - w:j+w);  

       
      Ix = Ix(:);  
      Iy = Iy(:);  
      b = - It(:); % get b here  

     
      A = [Ix Iy]; % get A here  
      nu = pinv(A)*b; % get velocity here  

       
      u(i,j)=nu(1);  
      v(i,j)=nu(2);  
   end ;  
end ;  
% downsize u and v  
u_deci = u(1 :10:end, 1:10:end);  
v_deci = v(1:10:end, 1:10:end);  
% get coordinate for u and v in the original frame  
[m, n] = size(im1t);  
[X,Y] = meshgrid(1:n, 1:m);  
X_deci = X(1:20:end, 1:20:end);  
Y_deci = Y(1:20:end, 1:20:end);  
%% Plot optical flow field  
figure();  
im show(fr2);  
hold on;  
% draw the velocity vectors  
 quiver(X_deci, Y_deci, u_deci,v_deci, 'y' )  
hold off  


