
1

Computer Vision

CSE 5323.03

Final Project Report

Topic: Object Tracking and Segmentation

using Feature Points and Cluster Analysis

Due: November 30, 2015

Raghavender Sahdev

214292742

2

ACKNOWLEDGEMENT

I would like express my gratitude towards Professor Minas E. Spetsakis for

providing me not only with the opportunity of carrying out my proposed

project under his supervision, but also providing me with the valuable

guidance and support throughout the course of my project. I am also grateful

to Mr. Mahdi Biparva for his valuable insights during the project proposal and

mid way evaluations.

I express my warm thanks to my friends Omar and Chris for their valuable

feedback and insights through the course. Additionally I take this opportunity

to the whole class for proving a friendly atmosphere which made the course

and the project in general way more fun.

My special thanks go to my parents and brother for always supporting me in

my studies in a foreign country.

3

PROJECT ABSTRACT

Project Title: Tracking and Segmentation using Feature Points and

Cluster Analysis

Supervisor: Professor Minas E. Spetsakis, York University, Canada

Teaching Assistant: Mr. Mahdi Biparva

Semester: Fall 2015

Name of Student: Raghavender Sahdev Student No. 214292742

In this project we aim to track a moving object taken from an image sequence.

The object could be a book, a human, swimmer, skater, a vehicle or anything

that can exhibit motion. Object Tracking has numerous applications in the field

of Security and Surveillance, traffic monitoring, medical imaging, Human

computer Interaction and many more.

In this project we target at tracking objects in videos taken from a fixed camera

and a moving camera. We track single objects and multiple objects in both

cases. For multiple object tracking using moving camera, we propose a

plausible solution to it too. We here propose an algorithm based on harris

feature point, flow computation and cluster analysis. We track objects and

then compare our results/implementation with a state of the art existing

algorithms - Optical flow, Kalman filter, Mean shift or the KLT tracker.

4

Contents

1. Aim of the Project...1

2. Introduction………………………………………………………………1

3. Assumptions……………………………………………………………..2

4. Our Proposed Algorithm……………………………………….…..2

a. Single Object Tracking

b. Multiple Object Tracking

c. Tracking single object from moving camera

d. Tracking multiple objects from moving camera

5. Our Results…………………………………………………………………8

6. Comparison to state of the art algorithms…………….….13

7. Conclusion so far………………………………………………………15

A1. References………………………………………………………………….16

A2. Appendix17…………………………………………………………………17

1

1. AIM OF THE PROJECT

In this project we aim to track a moving object in a video in real time. The object could be a book, a

human, a vehicle or anything that can exhibit motion. Object Tracking has numerous applications in

the field of Security and Surveillance, traffic monitoring, medical imaging, Human computer

Interaction and many more.

In this project we target at tracking objects in videos taken from a fixed camera. We here propose an

algorithm similar to that proposed by Wong and Spetsakis 2003 [1]. We track objects and then

compare our results/implementation with a state of the art existing algorithm from one among the

following Optical flow, Kalman filter, Mean shift or the KLT tracker.

In this project we aim to solve the following three cases:

1. Tracking a single object from a stationary camera

2. Tracking multiple objects from a stationary camera

3. Tracking a single object when the camera exhibits motion

A rough extension to case 3 is also proposed to track multiple objects from a moving camera.

2. INTRODUCTION

Object Tracking has been a subject of research for a very long time. Object Tracking can be done in

various ways:

¶ Feature Point Based Object Tracking – In such approaches feature points of the objects are

extracted and these points are then tracked to track the object motion. The feature points

from an object can be Corners as in the Harris Corner Detector [2], SIFT (Scale Invariant

Feature Transform) by Lowe [3], SURF (Speeded Up Robust Features) points [4], HOG

descriptors as in the famous paper by Dalal and Triggs[5] or any other valid features which

can be tracked in consecutive frames from a video.

¶ Template Matching based tracking – This kind of tracking generally involves tracking a

specific object in a scene whose template is known apriori. Examples of such tracking may

include tracking a specific object such as a soccer ball in a game of soccer, tracking a specific

object (could be a book, a toy, a specific car or anything else that you can think of) in a

scene.

¶ Color Histogram Based tracking

¶ Probabilistic / Markov Model Based Tracking - This generally involves using the information

from the previous frames and predicting the motion based on a probabilistic model.

Algorithms like Kalman Filters and Particle Filters fall under this category.

¶ Contour Based Tracking

We here focus on Feature Point Based Object Tracking. We here aim to track objects in a video taken

from a fixed stationary camera. For the simplicity of the project we initially focus on tracking a single

object in a video or an image sequence. Later we propose an algorithm to extend this single object

based tracking to track multiple objects in a video.

2

The latter part of the project focuses on tracking a single object from a camera which exhibits

motion. We then extend this approach to track multiple objects from a moving camera. It should be

noted the initial aim of this project was just to track a single object from a moving camera, however

after implementing the former case, it seemed plausible to extend this approach to the multi object

tracking too.

3. ASSUMPTIONS

Object Tracking can be done in numerous ways. We here assume the following to track objects:

¶ The moving objects should not occlude each other – In our proposed algorithm we assume

that the objects being tracked do not occlude each other. In case of an occlusion between 2

moving objects, our algorithm is not able to distinguish between the 2 tracked objects.

¶ The object should have at least 3 corners – this is a very reasonable assumption as most

objects have much more than three corners.

¶ The object should not be moving very fast – this assumption also is very reasonable for the

kind of image sequences we focus on. It is assumed that the motion does not suddenly

change a lot.

¶ It is assumed that the object does not undergo any deformation for tracking using a

stationary camera.

¶ The video is taken from a stationary camera – We also assume that the camera does not

move while taking the video, we focus on tracking objects when the camera exhibits motion

in the latter part of the project.

¶ In the case of tracking of single object with a camera that exhibits motion, we assume that

the object is not very close to the boundary of the image/frame and that the object remains

in the seen.

¶ In our last case we also assume that the foreground object being tracked moves faster than

the background. We additionally assume that the object moves at a different speed than the

background.

¶ The foreground and background have corners.

4. OUR PROPOSED ALGORITHM

We here divide the object tracking problem into tracking image sequences captured using a

stationary camera and a camera that exhibits motion. For each case we aim to target single object

tracking and multiple object tracking. We present the approaches for the 4 cases to track objects

below:

4.1 SINGLE OBJECT TRACKING

We here propose an algorithm wherein we follow the steps:

1. Input the Image sequence / video

2. We then do a background subtraction

3. Detect the corners

4. Match the Detected corners in the next frame

5. Draw a convex hull around the detected corners

3

6. Repeat the above steps for all frames to compute the tracking and segmentation of the

object

Input the Image Sequence / Video

The image sequences and the video being used in this project has been taken from the link –

cmp.felk.cvut.cz/~vojirtom/dataset and the existing videos in matlab.

We track use the

Background Subtraction

We take 3 frames frame (i+1), frame I, frame (i-1), We then compute the difference of the (i+1)th

frame and the ith frame.

We compute the difference

Ὀȟ ὪὶὥάὩ Ὥ ὪὶὥάὩ Ὥ ρ,

Ὀ ȟ ὪὶὥάὩ Ὥ ρ ὪὶὥάὩ Ὥ

After Doing Background subtraction we get rid of the background and only the moving objects are

retained.

Corner Detection

We here use the famous Harris Corner Detector to detect the corners in the frames. The detected

corner then act as the feature points which we track in the consecutive frames to track the objects.

Here we compute the feature points using an approach similar to Shi-Tomasi / Harris Corner

Detector. We compute the matrix, M for each pixel and threshold its minimum Eigen value to

compute the corner points. We define the matrix M as:

ὓ
Ὅ Ὣz Ὅ Ὣz

Ὅ Ὣz Ὅ Ὣz

Here the Gaussian filter Ὣ Ὡ and Ὅ ὍȢὍ ȟ Ὅ ὍȢὍ ὥὲὨ Ὅ ὍȢὍ and Ὅ, Ὅ

are the gradients of the image in x and y directions respectively which have been obtained by

convolving the images with the following filters:

Ὠὼ
ρ π ρ
ρ π ρ
ρ π ρ

 ὥὲὨ Ὠώ
ρ ρ ρ
π π π
ρ ρ ρ

We then apply non maximal suppression to detect the local maximas to reduce the number of

feature/corner points. These corner points serve as the candidate points to be chosen as the feature

points in our algorithm.

Matching the Detected Corners in the next frame

4

After background subtraction we do corner detection to get corners in the images Ὀȟ ὥὲὨ Ὀ ȟ.

We use the one of the following ways to match the corners.

Method1 ς Based on SSD and convex hull

1. Detect corners in the image Ὀȟ – it should be noted that the corners will only appear in

the moving objects because after background subtraction algorithm the background would

be eliminated and only the foreground which is the moving objects in this context remains

2. Compute the convex hull using the corner points of the image Ὀȟ , this has a different

approach in case of multiple object tracking.

3. After computing the convex hull, match the points on the convex hull to find their

corresponding points using a simple sum of squared differences method.

4. After getting the matched points in the next frame, plot the convex hull again to get the

object in the next frame. Here we only match the objects on the hull.

5. Repeat the above steps for all the frames to track the object in the video.

Method 2 ς Based on Corner matching based on Euclidean distance

1. Detect Corners in the images Ὀȟ ὥὲὨ Ὀ ȟ – again corners only appear in the moving

objects due to background subtraction.

2. Compute the convex hull of the image Ὀȟ . For each point that lies on this hull, find its

corresponding point/corner from the corners detected in the image Ὀ ȟ based on the

minimum Euclidean distance. So a point on the hull ὴwill have a matching point ὴ such

that:

ὴ ὴὪέὶ ύὬὭὧὬ ὸὬὩὨὭίὸὥὲὧὩ ὴ ὴ Ὥί ὰὩὥίὸȠ ὴ ‭ ὧέὶὲὩὶί ὨὩὸὩὧὸὩὨ Ὥὲ Ὀ ȟ

3. Repeat step 2 to find all feature points / corners in the image Ὀ ȟȢ

4. After finding the corresponding points compute the convex hull of these points and that will

be the next position of the object in the next frame.

5. Repeat the above steps for all the frames to track the object in the image sequence / video

Convex Hull Generation

We compute the convex hull by using the matlab function convhull. A convex hull is a boundary over

a set of points which covers each point.

Figure1: A convex hull over a set of points

5

4.2 MULTIPLE OBJECT TRACKING

We here extend our algorithm to track multiple objects in a scene. Currently the multiple object

tracking code is not complete so only a part of it has been implemented. To track multiple objects

we use a similar algorithm as we used for tracking a single object. Here it should be noted that our

algorithm can not handle occlusion very well. And as of now to track multiple object one must know

the number of objects in the scene apriori. We use the following steps to track multiple objects:

1. Input the Image sequence / video

2. Do background subtraction

3. Detect the corners

4. Use K means clustering to cluster the detected corners into k clusters.

5. For each cluster - match the Detected corners in the next frame

6. For each cluster - Draw a convex hull around the detected corners

7. Repeat the above steps for all frames to compute the tracking and segmentation of the

object

Input the ImageSequence / Video

Here we use the videos that come with the matlab software – ‘atrium.aviΩ and ‘visiontraffic.aviΩΦ In

each of these videos we have multiple objects moving. We attempt to track them using our

proposed algorithm. It is not finished as of now.

Background Subtraction

This step remains the same as that for tracking single object

Detect the corners

This step also remains the same as that for tracking a single object

K means clustering the detected corners into k clusters

After detecting corners in the image we use K means clustering to cluster the detected corners into k

clusters. Each of the detected objects will have corners and all corners of a specific object will be

close to itself and hence after K means clustering, we will get K clusters corresponding to the K

objects in the scene.

Matching /Tracking Feature Points

For each of the clusters we match / track the feature points in the same way as we did for the single

object tracking, treating each cluster corresponding to one object.

Convex Hull Generation

We follow the convex hull generation for each cluster in the same way as we did for single object

tracking.

4.3 TRACKING A SINGLE OBJECT FROM A MOVING CAMERA

In this section we solve the problem wherein we track a single object from an image sequence taken

from a camera which exhibits some motion. We solve this problem by computing the flow between

6

2 frames and using clustering to cluster the flow to separate out the foreground moving object and

the background into 2 clusters.

We propose the following algorithm to track the object in a moving background:

1. Extract the feature points

2. Match / track the feature points

3. Compute the flow using the feature points

4. Generate a feature vector for each point

5. Clustering the features

6. Find out the cluster corresponding to the foreground object

7. Track the foreground cluster

8. Fit a convex hull on the cluster to segment out the object

Extract the Feature Points and compute the Flow

The feature points are extracted in a very similar way as were extracted for the previous 2 cases as in

section 4.1 and 4.2. The difference here is that we do not do background subtraction here. We

detect the harris corner points in the the ith frame. We call these points as the feature points.

Match / Track the Feature Points, Compute the Flow and Generate the features

We use the feature points computed in the previous section from frame I to match it to the

corresponding feature points in frame (i+1). We match the points on a simple Sum of Squared

difference (SSD) error measure. We search a window of size ςύ ρᶻςύ ρ and compute SSDs

over the patch of size ὴ. The central pixel of the patch corresponding to the least SSDs is the

matched feature point. So say the point ὖ in frame Ὥ maps to the point ὖ in frame Ὥ ρ. We

compute the flow of the point P as:

όᴆ ὖὼȟώ ὖ ὼᴂȟώᴂ

Where όᴆ is the flow vector and ὼȟώᴂ is the corresponding point in frame Ὥ ρ.

We then use generate the vector

ὠ
όᴆ
ὖ

So this vector is actually the matrix, S as below:

Ὓ

ό
ὺ
ὖ ὼ
ὖ ώ

Clustering the Features

From the previous section, we compute the matrix Ὓ for each of the detected feature points ὖ. For

each point we call this matrix Ὓ as the feature vector. We do this for all the detected feature points

to come up with features Ὓ ȟὛȟὛ ȣȣὛ where n is the number of feature points. We then use a

simple cluster analysis to cluster these features into 2 clusters. We use simple K-means based on the

Euclidean distance measure/kernel for clustering the features. The 2 clusters correspond to the

background and the foreground.

Find out the cluster corresponding to the foreground

After clustering the features into 2 clusters, each point belongs to either a foreground cluster (object

to be tracked) or the background cluster (due to camera motion). We now need to find out the

7

cluster corresponding to the foreground, we do so by computing the average flow of each cluster.

We compute the average flow magnitude over all points in each cluster.

Ὂὰέύρ ό ὺ

Ὂὰέύς ό ὺ

Where όis the flow in x direction of the feature point i between frame Ὥ and Ὥ ρ. We label the

foreground cluster as the one which has more flow than the other. If Ὢὰέύ ρ Ὢὰέύ ς, we say

cluster 1 corresponds to the foreground else cluster 2 corresponds to the foreground.

Track the clusters

So assume we have k clusters detected in frame i and k clusters in frame i+1, we map each of the

clusters in frame I to the corresponding cluster in frame i+1. It should be noted that this could be

made simpler by just considering 2 clusters, however generalizing it for k clusters makes it easy to

extend this approach to track not only single objects but also multiple objects from a moving

camera. For mapping each cluster to its corresponding cluster, we map the centroids of the clusters

in frame I to those in frame i+1. We compute the distance between each of the cluster centroids in

frame i and frame i+1.

Fit a convex hull

Here we fit a convex hull to roughly segment out the part in the image corresponding to the object

being tracked. We use the convex hull for the points corresponding to the foreground cluster. We

use this in exactly the same way as was used in section 4.2

4.4 Tracking multiple objects from a moving camera

Here we extend the approach presented in section 4.4 to track multiple objects from a moving came.

We take as input from the user the number of objects in the image sequence as apriori. We then

simply set the number of clusters as the number of objects + 1 for the background. It should be

noted that this is based on the assumption that the foreground objects do not occlude each other or

are in very close proximity with each other and that the flow of the background is different from the

foreground objects.

8

5 OUR RESULTS SO FAR

To show the validation and appropriateness of our proposed algorithm we present our

results in this section. We first present results obtained for cases corresponding to the

image sequence taken from a stationary camera, later we show the same for the moving

camera case.

Single Object Tracking using a fixed camera

Figure2: Image generated after background subtraction (left); corners/feature points detected in the

resulting image

Figure 3: Convex Hull used to segment out the tracked object using method 1 and 2 as descrbed in

the previous section

9

Figure4: Image (electric board) generated after background subtraction (left); corners/feature points

detected in the resulting image

Figure5: Convex Hull used to segment out the tracked object using method 1 and 2 as descrbed in

the previous section

10

Multiple Object Tracking using a fixed camera

Figure 6: Image after background subtraction

Figure 7: Corner Detector and Clustering of corners in the Background subtracted image

Figure 8: Multiple Object

11

Single Object tracking using a moving camera

Figure 9: Tracking a couple skiing

Figure 10: Tracking a swimmer diving

12

Figure 11: Tracking a skater

13

Figure12: Tracking another skater ‘Asada’

6. COMPARISON TO A STATE OF THE ART ALGORITHM FOR TRACKING

After implementing the proposed algorithm, our tracking results would be compared with an already

existing algorithm (one of these KLT tracker, Optical Flow or Mean shift). We here compare our

results with an existing tracking algorithm. Here we present the results by using code taken from the

internet and the inbuilt code in matlab which uses a Kalman Filter to track multiple objects in a

video. We show below the people being tracked using a Kalman filter and the optical flow of the

image. At a later part of the project the KLT Tracker would used to compare the results to get

distinct boundaries to segment and track the object.

Using Fixed Camera

Figure 9: Binary image segmenting out the tracked objects using a Kalman Filter

14

Figure 10: Kalman Filter being used to track multiple objects in a video

Figure 11: Optical flow computed between 2 frames

15

Using moving camera

Figure 12: Lucas Kanade Tracker using optical flow to track skaters image sequence from a moving

camera

Figure 13: Optical flow of the swimmer clearly segments out the swimmer

7. CONCLUSION SO FAR

We have presented in this report single object tracking and multiple object tracking using a fixed

camera and a camera that exhibits motion. We also propose an algorithm to extend the single object

tracking to multiple object tracking using moving camera. The code for both the single object and

multiple object tracking case has been presented in the Appendix

16

REFERENCES

1. Tracking, Segmentation and Optical Flow by King Yuen Wong and Minas E. Spetsakis In

proceedings of 16th International Conference on Vision Interface 2003

2. A Combined Corner and Edge Detector by Chris Harris & Mike Stephens in proceedings of the

Alvey Vision Conference 1988

3. Distinctive image features from scale-invariant key points by DG Lowe In proceedings of

International journal of Computer Vision 2004

4. SURF: Speeded Up Robust Features by Herbert Bay, Tinne Tuytelaars and Luc Van Gool in

proceedings of European Conference on Computer Vision 2006

5. Histogram of Oriented Gradient for Human Detection by Navneet Dalal and Bill Triggs in

Conference on Computer Vision and Pattern Recognition 2005

6. Motion Segmentation and Tracking by King Yuen Wong and Minas E. Spetsakis in

proceedings of 15th International Conference on Vision Interface 2002

7. EM Clustering of Incomplete Data Applied to Motion Segmentation by King Yuen, Lu Ye and

Minas E. Spetsakis, In proceedings of British Machine Vision Conference 2004

8. Determining Optical Flow by Berthold K.P. Horn and Brian Schunck in proceedings of Artificial

Intelligence 1981

17

APPENDIX

Tracking_objects.m

tic
srcFiles =

dir('/home/sahdev/Desktop/Fall2015/ComputerVision5323/project_ideas/Trackin

gDataset/PROST/box/*.jpg'); % the folder in which ur images exists
n = length(srcFiles);
labels = cell(n,1);

parfor i = 1 : n
 filename =

strcat('/home/sahdev/Desktop/Fall2015/ComputerVision5323/project_ideas/Trac

kingDataset/PROST/box/' ,srcFiles(i).name);
 labels{i} = cellstr(filename);
end
toc
I = imread(char(labels{1}));
sz = size(I);
sz_x = sz(1,1);
sz_y = sz(1,2);

frames = uint8(zeros(sz_x,sz_y,n));
parfor i=1:n
 frame_i = imread(char(labels{i}));
 frame_i = rgb2gray(frame_i);
 frames(:,:,i) = frame_i;

end
toc

%%
strt2 = 2;
end2 = 10
for i=strt2:end2
 temp1 = frames(:,:, i) - frames(:,:,i - 1);
 temp1_i = frames(:,:,i);
 temp2_i = frames(:,:,i+1);

% pts = detectHarrisFeatures(temp1);
 pts = getCorners(temp1);
 y = floor(pts(:,1)); % this is y
 x = floor(pts(:,2)); % this is x
 n2 = numel(x);
 Features1 = zeros(n2,2);
 Features1(:,1) = y;
 Features1(:,2) = x;

 temp2 = frames(:,:,i+1) - frames(:,:,i);
% pts2 = detectHarrisFeatures(temp2);
 pts2 = getCorners(temp2);
 y2 = floor(pts2(:,1)); % this is y
 x2 = floor(pts2(: ,2)); % this is x
 n3 = numel(x2);

18

 Features2 = zeros(n3,2);
 Features2(:,1) = y2;
 Features2(:,2) = x2;

% figure, imshow(frames(:,:,i)), hold on,

plot(y,x,'+','Color','yellow'),hold off
 % sample feature points randomly t o track them
 if i == strt2
 P = datasample(Features1,1);

 end
 %% feature matching based on computing minimum euclidean distance

between the detected feaure points
% distances = pdist2(P,Features2);
% [dist, matched_in dex] = min(distances);
% target_point = Features2(matched_index,:);
% P = target_point;

 %% build a convex hull from the features detected in the first 2 frames

i and (i - 1)
 k = convhull(Features1(:,1),Features1(:,2));
 bounds = z eros(numel(k),2);
 for j=1:numel(k)
 bounds(j,1) = Features1(k(j),1);
 bounds(j,2) = Features1(k(j),2);
 end

 %% feature matching based on computing minimum euclidean distance

between the detected feaure points
 matched_point s = zeros(0,2);
 % following for loops matches each of the points on the convex hull
 % generated from frames i and (i - 1) and matched it to the feature
 % points generated from frames (i+1) and i, so after execution of this
 % loop we have poin ts matched in from frames i,(i - 1) to that of frames
 % (i+1),i;; here we use this approach and not the SSD method to match
 % the corners as the SSD Method would be computationally expensive
 for j=1:numel(k)
 P_temp = [bounds(j,1) bounds(j ,2)];

 distances = pdist2(P_temp,Features2);
 [dist, matched_index] = min(distances);
 temp_target_point = Features2(matched_index,:);

 matched_points(j,:) = temp_target_point;
 end

 %% feature matching based on SSD measure
 % here we use another method to match the corners based on SSD we do
 % not detect the corners a second time in this approach, we dont use
 % Features2 here
 P_t1 = getCorners(temp1);
% P_t2 = getCorners(temp2);
 for j=1:numel(P_t1)/2
 P_Matched(j,:) = matchCorners(temp1_i,temp2_i,P_t1(j,:));
 end

 k2 = convhull(P_Matched(:,1),P_Matched(:,2));
 bounds2 = zeros(numel(k2),2);

19

 for j=1:numel(k2)
 bounds2(j,1) = P_Matched(k2 (j),1);
 bounds2(j,2) = P_Matched(k2(j),2);
 end
 figure, imshow(frames(:,:,i+1)), hold on, plot(y,x, '+' , 'Color' , 'red'),

plot(bounds2(:,2),bounds2(:,1), 'Color' , 'cyan'),hold off

 figure, imshow(frames(:,:,i+1)), hold on,

plot(y2,x2, '+' , 'Color' , 'yellow'),

plot(matched_points(:,1),matched_points(:,2), 'Color' , 'red'),hold off

% figure, imshow(frames(:,:,i+1)), hold on,

plot(target_point(1,1),target_point(1,2),'+','Color','red'),hold off
% figure, imshow(temp2);% hold on , plot(y,x,'+','Color','yellow'),hold

off
%

end
matchCorners .m

function P = matchCorners(I,I2,Point_p)

sz = size(I);
 size_x = sz(1,1);
 size_y = sz(1,2);
 w=2;
 p=3;
 x2 = 0;
 y2 = 0;
 SSD = 0;
 for i= - w:w
 fo r j= - w:w
 ssd = 0;
 temp1 = Point_p(1,2); % gets the x coordinate
 temp2 = Point_p(1,1); % gets the y coordinate
 px_corr = 15;

% handling points lying close to the border of the image

if (temp1 <=px_corr || temp2 <=px_corr || temp1>=size_x - px_corr

|| temp2>=size_y - px_corr)
 SSD(i+w+1,j+w+1) = 9999;
 break
 end mask1 = I(temp1 - p:temp1+p,temp2 - p:temp2+p);
 mask2 = I2(temp1 - p+i:temp1+p+i,temp2 - p+j:temp2+p+ j);
 dif_mask = mask2 - mask1;
 dif_mask = dif_mask.^2;
 SSD(i+w+1,j+w+1) = sum(sum(dif_mask));
 end
 end
 [t1 it1] = min(SSD);
 [t2 it2] = min(t1);
 [t3 it3] = min(SSD,[],2);
 [t4 it4] = min(t3);
 x2 = Point_p(1,2) + it4 - (w+1);
 y2 = Point_p(1,1) + it2 - (w+1);

% figure, imshow(I);
% imshow(I2),hold on, plot(y2,x2,'+','Color','red'),hold off
 P = [x2 y2];
end

20

getCorners .m

function P = getCorners(I)
 size_xy = size(I);
 size_x = size_xy(1,1);
 size_y = size_xy(1,2);
 % I = imresize(I,[resize_x resize_y]);

 %% create a filter to compute the gradient of the image in x and y

direction
 dx = [- 1 0 1 ; - 1 0 1 ; - 1 0 1];
 dy = [- 1 - 1 - 1 ; 0 0 0 ; 1 1 1];
 Ix = conv 2(I,dx, 'same');
 Iy = conv2(I,dy, 'same');

 %% create the gaussian filter
 hsize = 3;
 sigma = 0.5;
 gauss = fspecial('gaussian' , hsize, sigma);

 %% convolving the square of the first derivative with the gaussian
 Ix2 = conv2(Ix .^2, gauss, 'same');
 Iy2 = conv2(Iy.^2, gauss, 'same');
 Ixy = conv2(Ix.*Iy, gauss, 'same');

 %% computing Harris Features

 det_M = Ix2.*Iy2 - Ixy.^2;
 trace_M = (Ix2 + Iy2);
 R = det_M ./trace_M;

 % citation Brown, Szeliski, andWinder (2005) paper use the harmonic

mean: source Richard Szeliski book chapter 4
 %% do non maximal supression on R and store the computed coordinates as

the corners
 hsize = 3;
 threshold = 2000;
 Filtered = ordfilt2(R,hsize^2,ones(hsize)); % dilate to retain the

local maxima
 R = R>threshold & (R==Filtered) ;
 % something really cool happens here we check if after dilation the

values are equal to
 %the original values and only retain the values which are equal, this

retains the l ocal maxima
 [x,y] = find(R);
% figure,imshow(I), hold on, plot(y,x,'+');
 hold off
 P = [y x];
end

MultipleObjectTracking.m

tic
video = VideoReader('atrium.avi');

21

% video = VideoReader('visiontraffic.avi');
nFrames = video.NumberOfFrames;
vidHeight = video.Height;
vidWidth = video.Width;

mov(1:nFrames) = struct('cdata' , zeros(vidHeight,vidWidth, 3,

'uint8'), 'colormap' ,[]);
parfor k = 1 : nFrames
 mov(k).cdata = read(video,k);
 mov(k).cdata = rgb2gray(mov(k).cdata);
end
toc

temp2 =3 ;
%%
P1=6;
strt2 = 400;
end_it = 402;
occlusion_threshold = 90;
moving_objects = 3;
for i=strt2:end_it
 temp1 = mov(i).cdata - mov(i - 1).cdata;

 %% FEATURE 1 using (i) and (i - 1)
 pts = detectHarrisFeatures(temp1);
 y = floor(pts.Locat ion(:,1)); % this is y
 x = floor(pts.Location(:,2)); % this is x
 n = numel(x);
 Features1 = zeros(n,2);
 Features1(:,1) = y;
 Features1(:,2) = x;

 %% FEATURE 1 using (i+1) and (i)
 temp2 = mov(i+1).cdata - mov(i).cdata;
 pt s2 = detectHarrisFeatures(temp2);
 y2 = floor(pts2.Location(:,1)); % this is y
 x2 = floor(pts2.Location(:,2)); % this is x
 n2 = numel(x2);
 Features2 = zeros(n2,2);
 Features2(:,1) = y2;
 Features2(:,2) = x2;

 %% do clus tering to track individual objects
 if i == strt2
 [idx,Centroid] = kmeans(Features1,moving_objects);
 cnt=1;
 % Group1,Group2,Group3,g1,g2,g3
 g1=1;g2=1;g3=1;
 Group1 =zeros(0,2);
 Group2 =zeros(0,2);
 Group3 =zeros(0,2);

 for j=1:numel(Features1)/2
 if (idx(j,1) == 1)
 Group1(g1,1) = Features1(j,1);
 Group1(g1,2) = Features1(j,2);
 g1 = g1+1;
 elseif (idx(j,1) == 2)
 Group2(g2,1) = Features1(j,1);

22

 Group2(g2,2) = Features1(j,2);
 g2 = g2+1;
 elseif (idx(j,1) == 3)
 Group3(g3,1) = Features1(j,1);
 Group3(g3,2) = Features1(j,2);
 g3 = g3+1;
 end
 end
 end
% figure, imshow(mov(i).cdata), hold on,

plot(y,x,'+','Color','yellow'),hold off

 %% tracking clusters
 % sample feature points randomly to track them
 if i == strt2
 while (1)
 P1 = datasample(Group1(:,:),1);
 if (P1(1,1) ==0 && P1(1,2) ==0)
 continue ;
 else
 break ;

 end
 end
 while (1)
 P2 = datasample(Group 2(:,:),1);
 if (P2(1,1) ==0 && P2(1,2) ==0)
 continue ;
 else
 break ;

 end
 end
 while (1)
 P3 = datasample(Group3(:,:),1);
 if (P3(1,1) ==0 && P3(1,2) ==0)
 continue ;
 else
 break ;

 end
 end
 end
 % till here we have 3 sampled points from each of the 3 clusters
 distances = pdist2(P1,Features2);
 [dist, matched_ind ex] = min(distances);
 target_point1 = Features2(matched_index,:);
 P1 = target_point1;

 distances = pdist2(P2,Features2);
 [dist, matched_index] = min(distances);
 target_point2 = Features2(matched_index,:);
 P2 = target _point2;

 distances = pdist2(P3,Features2);
 [dist, matched_index] = min(distances);
 target_point3 = Features2(matched_index,:);
 P3 = target_point3;

23

 if (i == strt2)

 k1 = findCluster(target_point1,Centroid);
 k2 = findCluster(target_point2,Centroid);
 k3 = findCluster(target_point3,Centroid);

 end
% figure, imshow(mov(i+1).cdata), hold on,

plot(target_point1(1,1),target_point1(1,2),'+','Color','red'),hold off
% figure, imshow(mov(i +1).cdata), hold on,

plot(target_point2(1,1),target_point2(1,2),'+','Color','yellow'),hold off
% figure, imshow(mov(i+1).cdata), hold on,

plot(target_point3(1,1),target_point3(1,2),'+','Color','cyan'),hold off

% colors2(k11) =

 %% cluster 1

 kover = convhull(Group1(:,1),Group1(:,2));
 bounds1 = zeros(numel(kover),2);
 for j=1:numel(kover)
 bounds1(j,1) = Group1(kover(j),1);
 bounds1(j,2) = Group1(kover(j),2);
 end
 figure, imshow(mov(i+1). cdata), hold on,

plot(bounds1(:,1),bounds1(:,2), 'Color' , 'red'),hold off

 %% cluster 2
 kover = convhull(Group2(:,1),Group2(:,2));
 bounds2 = zeros(numel(kover),2);
 for j=1:numel(kover)
 bounds2(j,1) = Group2(kover(j),1);
 bounds2(j,2) = Group2(kover(j),2);
 end
 figure, imshow(mov(i+1).cdata), hold on,

plot(bounds2(:,1),bounds2(:,2), 'Color' , 'cyan'),hold off

 %% cluster 3
 kover = convhull(Group3(:,1),Group3(:,2));
 bounds3 = zeros(numel(kover),2);
 for j =1:numel(kover)
 bounds3(j,1) = Group3(kover(j),1);
 bounds3(j,2) = Group3(kover(j),2);
 end
 figure, imshow(mov(i+1).cdata), hold on,

plot(bounds3(:,1),bounds3(:,2), 'Color' , 'yellow'),hold off
end
toc

trackingCamera_motion.m

tic

max_pixel_flow = 4; % this is w, this means actually a movement of

2*max_pixel_flow +1 for the object to be tracked;

24

patch_match_size = 3; % this is p, the size of the patch would be

patch_match_size x patch_match_size
boundary_effect = 15;
threshold = 18 00; % this is the threshold for the harris corner detector

srcFiles = dir('C: \ Users \ Raghavender Sahdev \ Desktop \ York

University \ Computer Vision 5323 \ project \ vision \ skatings2 \ skating2 \ *.jpg');

% the folder in which ur images exists
n = length(srcFiles);
l abels = cell(n,1);

parfor i = 1 : n
 filename = strcat('C: \ Users \ Raghavender Sahdev \ Desktop \ York

University \ Computer Vision

5323 \ project \ vision \ skatings2 \ skating2 \ ' ,srcFiles(i).name);
 labels{i} = cellstr(filename);
end
toc
I = imread(char(labels{1 }));
sz = size(I);
sz_x = sz(1,1);
sz_y = sz(1,2);

boundary_effect = floor(sz_x/30);
frames = uint8(zeros(sz_x,sz_y,n));
parfor i=1:n
 frame_i = imread(char(labels{i}));
 t_s = size(frame_i,3);
 if (t_s == 3)
 frame_i = rgb2gray(frame_i);
 end
 frames(:,:,i) = frame_i;

end
toc

%% set the frame sequence numbers to track
strt2 = 45;
end2 = 60;
% set the number of clusters to track multiple objects set this number to
% the total number of obhects in the scene - 1.
clusters = 2;

Centroid = zeros(2,clusters);
temp_pts = zeros(1,2);
for i=strt2:end2
 temp1 = frames(:,:,i);
 temp2 = frames(:,:,i+1);

 if i==strt2
 pts = getFeatures(temp1,threshold);
% temp_pts = pts;
 znt=1;
 for j=1:nu mel(pts)/2
 if (pts(j,1) < boundary_effect || pts(j,1) > (sz_x -

boundary_effect))
 ;
 elseif (pts(j,2) < boundary_effect || pts(j,2) > (sz_y -

boundary_effect))
 ;

25

 else
 temp_pts(zn t,1) = pts(j,1);
 temp_pts(znt,2) = pts(j,2);
 znt = znt + 1;
 end
 end
 end

 n_corners = numel(temp_pts)/2;
 matched_Points = zeros(n_corners,2);
 for j=1:n_corners
 matched_P oints(j,:) =

matchFeatures(temp1,temp2,temp_pts(j,:),max_pixel_flow,patch_match_size,bou

ndary_effect);
 end

 flow_compute = matched_Points - temp_pts;

 %% logic for the actual corner updates
 temp2_pts = matched_Points;
 temp_corne rs = getFeatures(temp2,threshold);

 actual_index=1;

 actual_corners = zeros(1,2);
 znt2=1;
 for j=1:numel(temp_corners)/2
 if (temp_corners(j,1) < boundary_effect || temp_corners(j,1) >

(sz_x - boundary_effect))
 ;
 elseif (temp_corners(j,2) < boundary_effect || temp_corners(j,2) >

(sz_y - boundary_effect))
 ;
 else
 actual_corners(znt2,1) = temp_corners(j,1);
 actual_corners(znt2,2) = temp_corners(j,2);
 znt2 = znt 2 + 1;
 end
 end

 %% this part tracks based on corner matching
 n_corners2 = numel(actual_corners)/2;
% for j=1:n_corners
% min=100;
% for k=1:n_corners2
% dist = (temp2_pts(j,1) - actual_corners(k,1))^2 +

(temp2_pts(j,1) - actual_corners(k,2))^2;
% if(dist < min)
% actual_index = k;
% end
% end
% matched_Points(j,1) = actual_corners(actual_index,1);
% matched_Points(j,2) = actual_corners(actual_ index,2);
% end

 %% cluster analysis begins
 temp_pts = matched_Points;
 mag = flow_compute(:,1).^2 + flow_compute(:,2).^2;

 flow2 = [flow_compute, matched_Points];

26

 if (i == strt2)
 [idx,Centroid] = kmeans(flow2 ,clusters);
 end

 [idx2,Centroid2] = kmeans(flow2,clusters);
 temp_Centroid2 = Centroid2;
 temp_idx2 = idx2;

 % following code maps clusters to their respective initial clusters
 % this part basically tracks the clusters

 for j=1:clusters
 min=9999;
 for k=1:clusters
 dist = (Centroid(j,3) - Centroid2(k,3))^2 + (Centroid(j,4) -

Centroid2(k,4))^2 ;
 k;
 if (dist < min)
 min = dist;
 C_k = k;
 end
 end

 j;
 C_k;
% disp('NEXT')
 for k_c=1:n_corners
 if (idx2(k_c) == C_k)
 temp_idx2(k_c) = j;
 end
 end
 end

 cnt=1;bnt =1;ant=1;ent =1; fnt=1;gnt=1;hnt=1;

 Features1 = zeros(1,2);
 Features2 = zeros(1,2);
 Features3 = zeros(1,2);
 Features4 = zeros(1,2);
 Features5 = zeros(1,2);
 Features6 = zeros(1,2);

 cluster1 = 0;
 cluster2 = 0;
 for j=1:n_corners
 if (temp_idx2(j) == 1)
 Features1(cnt,:) = matched_Points(j,:);
 cnt = cnt+1;
 cluster1 = cluster1 + (matched_Points(j,1) - temp_pts(j,1))^2 +

(matched_Points(j,2) - temp_pts(j,2))^2;
 elseif (temp_idx2(j) == 2)
 Features2(bnt,:) = matched_Points(j,:);
 bnt = bnt+1;
 cluster2= cluster2 + (matched_Points(j,1) - temp_pts(j,1))^2 +

(matched_Points(j,2) - temp_pts(j,2))^2;
 elseif (temp_idx2(j) == 3)
 Features3(ant,:) = matched_Points(j,:);
 ant = ant+1;
 elseif (temp_idx2(j) == 4)

27

 Features4(ent,:) = matched_Points(j,:);
 ent = ent+1;
 elseif (temp_idx2(j) == 5)
 Features5(fnt,:) = matched_Points(j ,:);
 fnt = fnt+1;
 elseif (temp_idx2(j) == 6)
 Features6(ent,:) = matched_Points(j,:);
 gnt = gnt+1;
 end

 end
 cluster1=cluster1/cnt;
 cluster2=cluster2/bnt;

 %% plotting the conve x hull
 bounds=zeros(1,2);
 bounds2=zeros(1,2);
 if (strt2 == i)
 if (cluster1 > cluster2)
 flag=1;
 else
 flag=0;
 end
 end
 if (flag == 1)
 if (size(Features1,1)>2)
 k1 = convhull(Features1(:,1),Features1(:,2));
 bounds = zeros(numel(k1),2);
 for j2=1:numel(k1)
 bounds(j2,1) = Features1(k1(j2),1);
 bounds(j2,2) = Features1(k1(j2),2);
 end
 end
 else
 if (size(Features2,1)>2)
 k2 = convhull(Features2(:,1),Features2(:,2));
 bounds = zeros(numel(k2),2);
 for j2=1:numel(k2)
 bounds2(j2,1) = Features2(k2(j2),1);
 bounds2(j2,2) = Features2 (k2(j2),2);
 end
 end
 end
 figure, imshow(temp1), hold on,
 plot(bounds(:,1),bounds(:,2), 'Color' , 'cyan')
 plot(bounds2(:,1),bounds2(:,2), 'Color' , 'cyan')
 plot(Features1(:,1),Features1(:,2), '+' , 'Color' , 'yellow'),
 plot(Features2(:,1),Features2(:,2), '+' , 'Color' , 'red'),
% plot(actual_corners(:,1),actual_corners(:,2),'+','Color','cyan'),
 plot(Features3(:,1),Features3(:,2), '+' , 'Color' , 'blue'),
 plot(Features4(:,1),Features4(:,2), '+' , 'Color' , 'green') ,
 plot(Features5(:,1),Features5(:,2), '+' , 'Color' , 'cyan'),
 plot(Features6(:,1),Features6(:,2), '+' , 'Color' , 'white'),
 hold off ;
end
toc

28

LucasKanadeTracker.m

%% input the 2 frames on which you want to compute the flow
fr1 = frames(:,:,9);
f r2 = frames(:,:,10);
figure();
subplot 211
imshow(fr1);
im1t = im2double((fr1));
im1 = imresize(im1t, 0.5); % downsize to half
subplot 212
imshow(fr2);
im2t = im2double((fr2));
im2 = imresize(im2t, 0.5); % downsize to half
%% Implementing Lucas Kanade M ethod
ww = 11;
w = round(ww/2);
% Lucas Kanade Here
% for each point, calculate I_x, I_y, I_t
Ix_m = conv2(im1,[- 1 1; - 1 1], 'valid'); % partial on x
Iy_m = conv2(im1, [- 1 - 1; 1 1], 'valid'); % partial on y
It_m = conv2(im1, ones(2), 'valid') + conv2(im2, - ones(2), 'valid'); %

partial on t
u = zeros(size(im1));
v = zeros(size(im2));
% within window ww * ww
for i = w+1:size(Ix_m,1) - w
 for j = w+1:size(Ix_m,2) - w
 Ix = Ix_m(i - w:i+w, j - w:j+w);
 Iy = Iy_m(i - w:i+w, j - w:j+w);
 It = It_m(i - w:i+w, j - w:j+w);

 Ix = Ix(:);
 Iy = Iy(:);
 b = - It(:); % get b here

 A = [Ix Iy]; % get A here
 nu = pinv(A)*b; % get velocity here

 u(i,j)=nu(1);
 v(i,j)=nu(2);
 end ;
end ;
% downsize u and v
u_deci = u(1 :10:end, 1:10:end);
v_deci = v(1:10:end, 1:10:end);
% get coordinate for u and v in the original frame
[m, n] = size(im1t);
[X,Y] = meshgrid(1:n, 1:m);
X_deci = X(1:20:end, 1:20:end);
Y_deci = Y(1:20:end, 1:20:end);
%% Plot optical flow field
figure();
im show(fr2);
hold on;
% draw the velocity vectors
 quiver(X_deci, Y_deci, u_deci,v_deci, 'y')
hold off

